Smoothness properties of the
 lower semicontinuous quasiconvex envelope

Marcus Wagner

Reihe Mathematik
M-03/2009

Brandenburgische Technische Universität Cottbus
Fakultät 1, Mathematisches Institut
Postfach 1013 44, D-03013 Cottbus

Smoothness properties of the lower semicontinuous quasiconvex envelope

Marcus Wagner

1. Introduction.

a) The lower semicontinuous quasiconvex envelope.

The present paper is motivated by the study of multidimensional control problems of Dieudonné-Rashevsky type, which will be obtained from the basic problem of multidimensional calculus of variations,

$$
\begin{equation*}
F(x)=\int_{\Omega} r(t, x(t), J x(t)) d t \longrightarrow \inf !; \quad x \in W_{0}^{1, p}\left(\Omega, \mathbb{R}^{n}\right), \quad \Omega \subset \mathbb{R}^{m} \tag{1.1}
\end{equation*}
$$

by incorporation of additional restrictions for the partial derivatives of $x, \mathrm{e} . \mathrm{g}$.

$$
J x(t)=\left(\begin{array}{ccc}
\frac{\partial x_{1}}{\partial t_{1}}(t) & \cdots & \frac{\partial x_{1}}{\partial t_{m}}(t) \tag{1.2}\\
\vdots & & \vdots \\
\frac{\partial x_{n}}{\partial t_{1}}(t) & \ldots & \frac{\partial x_{n}}{\partial t_{m}}(t)
\end{array}\right) \in \mathrm{K} \subset \mathbb{R}^{n m}(\forall) t \in \Omega
$$

Problems of this kind result from the study of underdetermined boundary value problems for nonlinear firstorder PDE's, ${ }^{01)}$ as optimization problems for convex bodies under geometrical restrictions, ${ }^{02)}$ in elasticity theory (torsion problems), ${ }^{03)}$ in population dynamics (age-structured problems) ${ }^{04)}$ and, recently, in the framework of image processing. ${ }^{05)}$ All mentioned applications have in common that the gradient restriction (1.2) is related to a convex body K with $\mathfrak{o} \in \operatorname{int}(\mathrm{K})$. The integrand $r(t, \xi, v)$ in (1.1) is a possibly nonconvex function of $v,{ }^{06)}$ whose natural range of definition is the subset $\Omega \times \mathbb{R}^{n} \times \mathrm{K}$ instead of the whole space.
In order to guarantee the existence of global minimizers in Dieudonné-Rashevsky type problems (1.1) - (1.2) with $n \geqslant 2, m \geqslant 2$ (and, at the same time, to justify the application of direct methods for their numerical solution), the relaxation of the problems must be based - in analogy to the multidimensional calculus of variations - on a generalized notion of convexity. ${ }^{07)}$ From the author's previous papers, ${ }^{08)}$ it is known that the case of general integrands $r(t, \xi, v)$ can be reduced to the special case where the integrand depends on v only. ${ }^{09)}$ Consequently, in the present paper we confine ourselves to the investigation of integrands

[^0]$f(v): \mathrm{K} \rightarrow \mathbb{R}$, which will be extended by $(+\infty)$ to $\mathbb{R}^{n m} \backslash \mathrm{~K}$, and their lower semicontinuous quasiconvex envelope as the appropriate semiconvex envelope. More precisely, we study functions within the following class:

Definition 1.1. (Function class $\left.\mathcal{F}_{\mathrm{K}}\right)$ Let $\mathrm{K} \subset \mathbb{R}^{n m}$ be a given convex body with $\mathfrak{o} \in \operatorname{int}(\mathrm{K})$. We say that a function $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{(+\infty)\}$ belongs to the class \mathcal{F}_{K} iff $f \mid \mathrm{K}$ zu $C^{0}(\mathrm{~K}, \mathbb{R})$ and $f \mid\left(\mathbb{R}^{n m} \backslash \mathrm{~K}\right) \equiv$ $(+\infty)$.

The notion of quasiconvexity for functions with values in $\overline{\mathbb{R}}=\mathbb{R} \cup\{(+\infty)\}$ will be specified as follows:
Definition 1.2. (Quasiconvex function with values in $\overline{\mathbb{R}})^{10)}$ A function $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{(+\infty)\}$ with the following properties is said to be quasiconvex:

1) $\operatorname{dom}(f) \subseteq \mathbb{R}^{n m}$ is a nonempty Borel set;
2) $f \mid \operatorname{dom}(f)$ is Borel measurable and bounded from below on every bounded subset of dom (f);
3) for all $v \in \mathbb{R}^{n m}$, f satisfies Morrey's integral inequality:

$$
\begin{equation*}
f(v) \leqslant \frac{1}{|\Omega|} \int_{\Omega} f(v+J x(t)) d t \quad \forall x \in W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right) \tag{1.3}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
f(v)=\inf \left\{\left.\frac{1}{|\Omega|} \int_{\Omega} f(v+J x(t)) d t \right\rvert\, x \in W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)\right\} \tag{1.4}
\end{equation*}
$$

Here $\Omega \subset \mathbb{R}^{m}$ is the closure of a bounded strongly Lipschitz domain.
For the lower semicontinuous quasiconvex envelope of a possibly unbounded function, we adopt the following definition:

Definition 1.3. (Lower semicontinuous quasiconvex envelope $\left.f^{(q c)}\right)^{11)}$ For any function $f: \mathbb{R}^{n m} \rightarrow$ $\overline{\mathbb{R}}=\mathbb{R} \cup\{(+\infty)\}$ bounded from below, we define its lower semicontinuous quasiconvex envelope by

$$
\begin{align*}
& f^{(q c)}(v)=\sup \left\{g(v) \mid g: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}\right. \text { quasiconvex and lower semicontinuous, } \\
& \left.\qquad g(v) \leqslant f(v) \forall v \in \mathbb{R}^{n m}\right\} \tag{1.5}
\end{align*}
$$

Obviously, Definition 1.3. generalizes the formation of the "usual" quasiconvex envelope for a function f with finite values since, in this case, all quasiconvex functions g below f are continuous from the outset.

b) Lipschitz continuity and differentiability of $f^{(q c)}$.

In the present paper, we provide some results about Lipschitz continuity and differentiability of the lower semicontinuous quasiconvex envelope $f^{(q c)}$ of a function $f \in \mathcal{F}_{\mathrm{K}}$ and compare them with the respective properties of the convex envelope f^{c}. As separately convex functions, $f^{(q c)}$ as well as f^{c} are locally Lipschitz continuous on int (K) (cf. Theorems 2.2. and 2.9.) and, consequently, $\lambda^{n m}$-a. e. differentiable on int (K). ${ }^{12)}$ For the convex envelope, these assertions can be sharpened in the following way:
${ }^{10)}$ [WAGNER 09a] , p. 73, Definition 2.9., as a specification of [Ball/Murat 84], p. 228, Definition 2.1., in the case $p=(+\infty)$.
11) [Wagner 09a] , p. 76, Definition 2.14., 2).
${ }^{12)}$ As a consequence of Rademacher's theorem, cf. [Evans/Gariepy 92], p. 81, Theorem 2.

Theorem 1.4. Let a convex body $\mathrm{K} \subset \mathbb{R}^{n m}$ with $\mathfrak{o} \in \operatorname{int}(\mathrm{K})$ and $\partial \mathrm{K}=\operatorname{ext}(\mathrm{K})$ and a function $f \in \mathcal{F}_{\mathrm{K}}$ be given.

1) (Global Lipschitz continuity of f^{c}) Assume that a) for every point $v_{0} \in \partial \mathrm{~K}$, there exists an affine function $\varphi\left(v, v_{0}\right)=\left\langle a\left(v_{0}\right), v-v_{0}\right\rangle+b\left(v_{0}\right)$ with $\varphi\left(v, v_{0}\right) \leqslant f(v) \forall v \in \mathrm{~K}$, and b) $\sup _{v_{0} \in \partial K}\left|a\left(v_{0}\right)\right|<(+\infty)$. Then the convex envelope f^{c} is globally Lipschitz continuous on K.
2) (Differentiability of f^{c} on $\left.\operatorname{int}(\mathrm{K})\right)^{13)}$ Assume that the function $f \in \mathcal{F}_{\mathrm{K}}$ is defined through

$$
f(v)=\left\{\begin{array}{c|l}
\widetilde{f}(v) & v \in \mathrm{~K} \tag{1.6}\\
(+\infty) & v \in \mathbb{R}^{n m} \backslash \mathrm{~K}
\end{array}\right.
$$

where $\widetilde{f}: \mathbb{R}^{n m} \rightarrow \mathbb{R}$ is a continuous function, which is continuously differentiable on K . Then the convex envelope f^{c} is continuously differentiable on $\operatorname{int}(\mathrm{K})$.

In the case of the quasiconvex envelope of a finite function $f: \mathbb{R}^{n m} \rightarrow \mathbb{R}$ bounded from below, BaLL/Kirchheim/Kristensen have been proved that the differentiability of f together with some growth conditions implies the differentiability of $f^{q c} .{ }^{14)}$ Then the partial derivatives of $f^{q c}$ admit a representation

$$
\begin{equation*}
\frac{\partial f^{q c}}{\partial v_{i j}}\left(v_{0}\right)=\int_{\mathbb{R}^{n m}} \frac{\partial f}{\partial v_{i j}}(v) d \nu(v), 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m \tag{1.7}
\end{equation*}
$$

with a "supporting measure" for $f^{q c}$ in v_{0}, i. e. a positive measure ν resulting as the weak*-limit of a sequence of probability measures $\left\{\nu^{N}\right\}$ with $f^{q c}\left(v_{0}\right) \leqslant \int_{\mathbb{R}^{n m}} f(v) d \nu^{N}(v) \leqslant f^{q c}\left(v_{0}\right)+1 / N$ and $\left(v_{0}\right)_{i j}=$ $\int_{\mathbb{R}^{n m}} v_{i j} d \nu^{N}(v)$.

The proof of analogous assertions for the lower semicontinuous quasiconvex envelope of a function $f \in \mathcal{F}_{\mathrm{K}}$ is confronted with serious difficulties. However, we were able to prove the following sufficient conditions for global Lipschitz continuity and differentiability of $f^{(q c)}$:
Theorem 1.5. (Sufficient condition for global Lipschitz continuity of $\left.f^{(q c)}\right)^{15)}$ Let a convex body $\mathrm{K} \subset \mathbb{R}^{n m}$ with $\mathfrak{o} \in \operatorname{int}(\mathrm{K})$ and $\partial \mathrm{K}=\operatorname{ext}(\mathrm{K})$ and a function $f \in \mathcal{F}_{\mathrm{K}}$ be given, which is globally Lipschitz continuous on K . Assume further that a) for every point $v_{0} \in \partial \mathrm{~K}$, there exists an affine function $\varphi\left(v, v_{0}\right)=$ $\left\langle a\left(v_{0}\right), v-v_{0}\right\rangle+b\left(v_{0}\right)$ with $\varphi\left(v, v_{0}\right) \leqslant f(v) \forall v \in \mathrm{~K}$, and b) $\sup _{v_{0} \in \partial \mathrm{~K}}\left|a\left(v_{0}\right)\right|<(+\infty)$. Then the lower semicontinuous quasiconvex envelope $f^{(q c)}$ is globally Lipschitz continuous on K as well.

Theorem 1.6. (Sufficient condition for differentiability of $f^{(q c)}$ in $\left.v_{0} \in \operatorname{int}(\mathrm{~K})\right)^{16)}$ Assume that a function $f \in \mathcal{F}_{\mathrm{K}}$ is defined through

$$
f(v)=\left\{\begin{array}{c|l}
\widetilde{f}(v) & v \in \mathrm{~K} ; \tag{1.8}\\
(+\infty) & v \in \mathbb{R}^{n m} \backslash \mathrm{~K}
\end{array}\right.
$$

where $\tilde{f}: \mathbb{R}^{n m} \rightarrow \mathbb{R}$ is a continuous function, which is continuously differentiable on some open neighbourhood of K . Assume further that, in relation to a point $v_{0} \in \operatorname{int}(\mathrm{~K})$, there exist a probability measure
${ }^{13)}$ [Griewank/Rabier 90], p. 701, Corollary 3.1., assuming instead that $\partial \mathrm{K}$ coincides with a ($n m-1$)-dimensional C^{1}-manifold. This will be implied by the stronger condition $\partial \mathrm{K}=\operatorname{ext}(\mathrm{K})$, cf. [Bonnesen/Fenchel 74], p. 26.
${ }^{14)}$ [Ball/Kirchheim/Kristensen 00], p. 334, Theorem A.
${ }^{15)}$ By this theorem, [WAGNER 06A], p. 76, Theorem 5.6., will be corrected. In the assertions ibid., pp. 97 ff ., the premisses must be adapted in the same way.
${ }^{16)}$ This corrects [WAGner 06a] , p. 76, Theorem 5.5. I'm indebted to Prof. Kirchieim (Düsseldorf) who identified a mistake in the proof ibid., p. 78 f.: Lemma 5.9. does not imply (5.37).
$\nu_{0} \in \mathrm{~S}^{(q c)}\left(v_{0}\right)$, a function sequence $\left\{x^{N}\right\}, W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ and a number $0<\mu<1$ with the following properties:
a) $f^{(q c)}\left(v_{0}\right)=\int_{\mathrm{K}} f(v) d \nu_{0}(v)$,
b) the constant generalized control $\boldsymbol{\nu}=\left\{\nu_{0}\right\}$ is generated by the sequence $\left\{v_{0}+J x^{N}\right\}$,
c) for almost all $t \in \Omega$ and all $N \in \mathbb{N}$, it holds that $v_{0}+J x^{N}(t) \in \mu \mathrm{K}$.

Then $f^{(q c)}$ is differentiable in v_{0}, and for all indices $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$, it holds that

$$
\begin{equation*}
\frac{\partial f^{(q c)}}{\partial v_{i j}}\left(v_{0}\right)=\int_{\mathrm{K}} \frac{\partial \tilde{f}}{\partial v_{i j}}(v) d \nu_{0}(v) \tag{1.9}
\end{equation*}
$$

The set $\mathrm{S}^{(q c)}\left(v_{0}\right) \subseteq\left(C^{0}(\mathrm{~K}, \mathbb{R})\right)^{*}$ will be described in Definition 2.11. below. In particular, it contains all "supporting measures" for $f^{(q c)}$ in v_{0} (cf. Theorem 2.12.).

The differentiability of $f^{(q c)}$ can be ensured further in all points $v \in \operatorname{int}(\mathrm{~K})$ where f and $f^{(q c)}$ coincide. This is the case, in particular, in those global minimizers of f, which are situated in the interior of K (Theorem 3.2.). Finally, we provide an example showing that the partial derivatives of $f^{(q c)}$, even in the case of their existence, do not necessarily admit a representation of the type (1.7):
Theorem 1.7. (Counterexample for the representation of $\nabla f^{(q c)}$ through a "supporting measure") There exist a convex body $\mathrm{K} \subset \mathbb{R}^{2 \times 2}$ and a function $f \in \mathcal{F}_{\mathrm{K}}$ such that one can find a point $v_{0} \in \operatorname{int}(\mathrm{~K})$ with the following properties: $f^{(q c)}$ is differentiable in v_{0} but for every probability measure $\nu_{0} \in \mathrm{~S}^{(q c)}\left(v_{0}\right)$ with $f^{(q c)}\left(v_{0}\right)=\int_{\mathrm{K}} f(v) d \nu_{0}(v)$, there exists at least one pair (i, j) of indices $1 \leqslant i \leqslant 2,1 \leqslant j \leqslant 2$ with

$$
\begin{equation*}
\frac{\partial f^{(q c)}}{\partial v_{i j}}\left(v_{0}\right) \neq \int_{\mathrm{K}} \frac{\partial f}{\partial v_{i j}}(v) d \nu_{0}(v) \tag{1.10}
\end{equation*}
$$

The same example shows that the assumption $\partial \mathrm{K}=\operatorname{ext}(\mathrm{K})$ cannot be removed from Theorem 1.4., 1) and Theorem 1.5. (Lemma 3.5., 3)).

We close this section with a synopsis of notations and abbreviations to be used in the paper. In Section 2, we collect first some tools from generalized convexity and the theory of generalized controls ("Young measures"). Then we summarize the present knowledge about the analytical and structural properties of the lower semicontinuous quasiconvex envelope $f^{(q c)}$. Section 3 contains the announced theorems and proofs.

c) Notations and abbreviations.

Let $k \in\{0,1, \ldots, \infty\}$ and $1 \leqslant p \leqslant \infty$. Then $C^{k}\left(\Omega, \mathbb{R}^{r}\right), L^{p}\left(\Omega, \mathbb{R}^{r}\right)$ and $W^{k, p}\left(\Omega, \mathbb{R}^{r}\right)$ denote the spaces of r dimensional vector functions whose components are k-times continuously differentiable, belong to the $L^{p}(\Omega)$ or to the Sobolev spaces of $L^{p}(\Omega)$-functions with weak derivatives up to k th order in $L^{p}(\Omega)$, respectively. In addition, functions within the subspaces $C_{0}^{k}\left(\Omega, \mathbb{R}^{r}\right) \subset C^{k}\left(\Omega, \mathbb{R}^{r}\right)$ and $W_{0}^{1, p}\left(\Omega, \mathbb{R}^{r}\right) \subset W^{1, p}\left(\Omega, \mathbb{R}^{r}\right)$ are compactly supported; the components of $x \in W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{r}\right)$ admit a Lipschitz continuous representative ${ }^{17)}$ with zero boundary values. By $\partial x / \partial t_{j}$, we denote the classical partial derivative of x by t_{j}. In the abbreviation $J x$ for the Jacobi matrix of x, however, we will not distinguish between classical and weak derivatives.
We denote by int (A), $\partial \mathrm{A}, \mathrm{cl}(\mathrm{A}), \mathrm{co}(\mathrm{A})$ and $|\mathrm{A}|$ the interior, the boundary, the closure, the convex hull and the r-dimensional Lebesgue measure of the set $A \subseteq \mathbb{R}^{r}$, respectively. Further, we define $\overline{\mathbb{R}}=\mathbb{R} \cup\{(+\infty)\}$ and equip $\overline{\mathbb{R}}$ with the natural topological and order structures where $(+\infty)$ is the greatest element.

[^1]Throughout the whole paper, we consider only proper functions $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$, assuming that dom $(f)=$ $\left\{v \in \mathbb{R}^{n m} \mid f(v)<(+\infty)\right\}$ is always nonempty. The restriction of the function f to the subset A of its range will be denoted by $f \mid$ A. If a function $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ belongs to the function class \mathcal{F}_{K} defined above then its restriction $f \mid \mathrm{K}$ is bounded and (even uniformly) continuous. Thus \mathcal{F}_{K} and the Banach space $C^{0}(\mathrm{~K}, \mathbb{R})$ are isomorphical and isometrical. Due to the compactness of K , the dual space $\left(C^{0}(\mathrm{~K}, \mathbb{R})\right)^{*}$ is isomorphical to the space $r c a(\mathrm{~K})$ of the signed regular measures acting on the σ-algebra of the Borel subsets of K . The subset of the probability measures will be denoted by rca ${ }^{p r}(\mathrm{~K})$.
A convex body $\mathrm{K} \subset \mathbb{R}^{n m}$ is understood as a convex, compact set with nonempty interior. ${ }^{18)}$ A point $v \in \mathrm{~K}$ is called extremal point of K iff $v=\lambda^{\prime} v^{\prime}+\lambda^{\prime \prime} v^{\prime \prime}, \lambda^{\prime}, \lambda^{\prime \prime}>0, \lambda^{\prime}+\lambda^{\prime \prime}=1, v^{\prime}, v^{\prime \prime} \in \mathrm{K}$ always imply $v^{\prime}=v^{\prime \prime}=v$. The set of all extremal points of K is denoted by ext (K). Every convex body possesses at least one extremal point.
We close with the introduction of the following three nonstandard notions. " $\left\{x^{N}\right\}$, A " denotes a sequence $\left\{x^{N}\right\}$ with members $x^{N} \in \mathrm{~A}$. If $\mathrm{A} \subseteq \mathbb{R}^{r}$ then the abbreviation " $(\forall) t \in \mathrm{~A}$ " has to be read as "for almost all $t \in \mathrm{~A}$ " resp. "for all $t \in \mathrm{~A}$ except a r-dimensional Lebesgue null set". The symbol \mathfrak{o} denotes, depending on the context, the zero element resp. the zero function of the underlying space.

2. Tools for the investigation of $f^{(q c)}$.

a) Generalized notions of convexity.

We start with an overview of the generalized convexity notions to be used in the present paper.
Definition 2.1. 1) (Polyconvex function) We consider $v \in \mathbb{R}^{n m}$ as a (n, m)-matrix and collect all subdeterminants of v within a vector $T(v)$ with dimension $\tau(n, m)$. A function $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ is said to be polyconvex if there exists a convex function $g: \mathbb{R}^{\tau(n, m)} \rightarrow \overline{\mathbb{R}}$ with $f(v)=g(T(v)) \forall v \in \mathbb{R}^{n m}$.
2) (Rank one convex function) A function $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ is said to be rank one convex if Jensen's inequality is satisfied in any rank one direction: for all $v^{\prime}, v^{\prime \prime} \in \mathbb{R}^{n m}$ (considered as (n, m)-matrices) it holds that

$$
\begin{equation*}
\operatorname{Rank}\left(v^{\prime}-v^{\prime \prime}\right) \leqslant 1 \Longrightarrow f\left(\lambda^{\prime} v^{\prime}+\lambda^{\prime \prime} v^{\prime \prime}\right) \leqslant \lambda^{\prime} f\left(v^{\prime}\right)+\lambda^{\prime \prime} f\left(v^{\prime \prime}\right) \quad \forall \lambda^{\prime}, \lambda^{\prime \prime} \geqslant 0, \lambda^{\prime}+\lambda^{\prime \prime}=1 \tag{2.1}
\end{equation*}
$$

3) (Separately convex function) A function $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ is said to be separately convex if it is convex in every variable $v_{i j}$ while the other arguments are fixed.

For functions $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$, the following implications hold: f convex $\Longrightarrow f$ polyconvex $\Longrightarrow f$ rank one convex $\Longrightarrow f$ separately convex. ${ }^{19)} f^{c}, f^{p c}, f^{q c}$ and $f^{r c}$ denote the convex, polyconvex, quasiconvex (in the usual sense) ${ }^{20}$) and rank one convex envelope of a given function f, i. e. the largest function below f with the respective convexity property. The following theorem states that local Lipschitz continuity can be guaranteed even for separately convex functions.

Theorem 2.2. (Local Lipschitz continuity of separately convex functions) ${ }^{21)}$ Every separately convex function $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ is locally Lipschitz continuous on $\operatorname{int}(\operatorname{dom}(f))$.
18) We follow [Brøndsted 83] and [Schneider 93].
19) [Dacorogna 08] , p. 159 f., Theorem 5.3., (i), and Remark 5.4., (iii). The notion of quasiconvexity cannot be classified within this sequence without additional assumptions (note, however, Theorem 2.9. below and [CONTI 08]).
${ }^{20)}$ Cf. [Dacorogna 08], p. 156 f., Definition 5.1 (ii).
${ }^{21)}$ Ibid., p. 47, Theorem 2.31.

From [Ball/Kirchieim/Kristensen 00], we take the following differentiability theorem:
Theorem 2.3. (Differentiability of separately convex functions) ${ }^{22)}$ Consider the closed ball $\mathrm{K}\left(v_{0}, \delta\right)$ $\subset \mathbb{R}^{n m}$. Let two functions $\varphi^{\prime}, \varphi^{\prime \prime}: \mathrm{K}\left(v_{0}, \delta\right) \rightarrow \mathbb{R}$ with $\varphi^{\prime}\left(v_{0}\right)=\varphi^{\prime \prime}\left(v_{0}\right)$ and $\varphi^{\prime}(v) \leqslant \varphi^{\prime \prime}(v)$ for all $v \in \mathrm{~K}\left(v_{0}, \delta\right)$ be given. Assume further that φ^{\prime} is separately convex, and that for $\varphi^{\prime \prime}$ there exists a vector a $\in \mathbb{R}^{n m}$ with

$$
\begin{equation*}
\limsup _{w \rightarrow 0} \frac{1}{|w|}\left(\varphi^{\prime \prime}\left(v_{0}+w\right)-\varphi^{\prime \prime}\left(v_{0}\right)-a^{\mathrm{T}} w\right) \leqslant 0 \tag{2.2}
\end{equation*}
$$

Then φ^{\prime} as well as $\varphi^{\prime \prime}$ are differentiable in v_{0} with $\nabla \varphi^{\prime}\left(v_{0}\right)=\nabla \varphi^{\prime \prime}\left(v_{0}\right)$.

b) Generalized controls.

A measure-valued map $\boldsymbol{\mu}: \Omega \rightarrow r c a{ }^{p r}(\mathrm{~K})$ with $t \longmapsto \mu_{t}$ is called a generalized control ("Young measure") if, for any continuous function $g \in C^{0}(\mathrm{~K}, \mathbb{R})$, the function $h_{g}(t)=\int_{\mathrm{K}} g(v) d \mu_{t}(v)$ is Borel measurable on $\Omega .{ }^{23)}$ Two generalized controls $\boldsymbol{\mu}^{\prime}=\left\{\mu_{t}^{\prime}\right\}$ and $\boldsymbol{\mu}^{\prime \prime}=\left\{\mu_{t}^{\prime \prime}\right\}$ will be identified if $\mu_{t}^{\prime} \equiv \mu_{t}^{\prime \prime}$ holds for almost all $t \in \Omega$. The set of all equivalence classes of generalized controls will be denoted by $\mathcal{Y}(\mathrm{K})$. The convergence of a sequence $\left\{\boldsymbol{\mu}^{N}\right\}, \mathcal{Y}(\mathrm{K})$ towards the limit $\boldsymbol{\mu} \in \mathcal{Y}(\mathrm{K})$ is defined through
$\boldsymbol{\mu}^{N} \rightarrow \boldsymbol{\mu} \Longleftrightarrow \int_{\Omega} \int_{\mathrm{K}} f(t) g(v)\left(d \mu_{t}^{N}(v)-d \mu_{t}(v)\right) d t \rightarrow 0 \quad$ for all $f \in L^{1}(\Omega, \mathbb{R}), g \in C^{0}(\mathrm{~K}, \mathbb{R})$.
Definition 2.4. (Generating sequences for generalized controls) ${ }^{24)}$ We say that the sequence $\left\{u^{N}\right\}$, $L^{\infty}\left(\Omega, \mathbb{R}^{n m}\right)$ generates the generalized control $\boldsymbol{\mu} \in \mathcal{Y}(\mathrm{K})$ if $u^{N}(t) \in \mathrm{K}(\forall) t \in \Omega \forall N \in \mathbb{N}$ and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{\Omega} f(t) g\left(u^{N}(t)\right) d t=\lim _{N \rightarrow \infty} \int_{\Omega} \int_{\mathrm{K}} f(t) g(v) d \delta_{u^{N}(t)}(v) d t=\int_{\Omega} \int_{\mathrm{K}} f(t) g(v) d \mu_{t}(v) d t \tag{2.4}
\end{equation*}
$$

for all $f \in L^{1}(\Omega, \mathbb{R})$ and $g \in C^{0}(\mathrm{~K}, \mathbb{R})$.
Definition 2.5. (Generalized gradient controls, "gradient Young measures") ${ }^{25)}$ A measure-valued map $\boldsymbol{\mu} \in \mathcal{Y}(\mathrm{K})$ is called a generalized gradient control if it is generated (in the sense of Definition 2.4.) by a sequence $\left\{J x^{N}\right\}, L^{\infty}\left(\Omega, \mathbb{R}^{n m}\right)$ with $x \in W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ and $J x^{N}(t) \in \mathrm{K}(\forall) t \in \Omega \forall N \in \mathbb{N}$. The set of equivalence classes of generalized gradient controls will be denoted by $\mathcal{G}(\mathrm{K}) \subseteq \mathcal{Y}(\mathrm{K})$.

Theorem 2.6. (Properties of the spaces $\mathcal{Y}(\mathrm{K})$ and $\mathcal{G}(\mathrm{K})$)

1) ${ }^{26)}$ Every sequence $\left\{u^{N}\right\}, L^{\infty}\left(\Omega, \mathbb{R}^{n m}\right)$ with $u^{N}(t) \in \mathrm{K}(\forall) t \in \Omega \forall N \in \mathbb{N}$ admits a weak*-convergent subsequence, which generates a generalized control $\boldsymbol{\mu} \in \mathcal{Y}(\mathrm{K})$.
2) ${ }^{27)}$ Every sequence $\left\{x^{N}\right\}$, $W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ with $\left\|x^{N}\right\|_{L^{\infty}\left(\Omega, \mathbb{R}^{n}\right)} \leqslant C$, Jx $x^{N}(t) \in \mathrm{K}(\forall) t \in \Omega \forall N \in \mathbb{N}$ admits a subsequence $\left\{x^{N^{\prime}}\right\}$ with $x^{N^{\prime}} \rightarrow C^{0}\left(\Omega, \mathbb{R}^{n}\right) x \in W^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ and $J x^{N^{\prime}} \xrightarrow{*} L^{\infty}\left(\Omega, \mathbb{R}^{n m}\right) J x \in L^{\infty}\left(\Omega, \mathbb{R}^{n m}\right)$. Consequently, $\left\{J x^{N^{\prime}}\right\}$ generates a generalized gradient control $\boldsymbol{\mu} \in \mathcal{G}(\mathrm{K})$.
${ }^{22)}$ [Ball/Kirchheim/Kristensen 00], p. 341, Corollary 2.5.
${ }^{23)}$ Cf. [Gamkrelidze 78], pp. 23 ff., and [MÜLLER 99], p. 115 ff.
${ }^{24)}$ Cf. [Pedregal 97], pp. 96 ff .
3) [Kinderlehrer/Pedregal 91], p. 333, [MüLLER 99], p. 126, Definition 4.1 .
4) [MÜLLER 99], p. 115 f., Theorem 3.1.
5) [WAGner 07] , p. 10, Theorem 2.14., 1).
6) ${ }^{28)}$ With respect to the topology from (2.3), the set $\mathcal{Y}(\mathrm{K})$ is sequentially compact.
7) ${ }^{29)}$ The set $\mathcal{G}(\mathrm{K})$ of the generalized gradient controls forms a sequentially compact subset of $\mathcal{Y}(\mathrm{K})$.

The mean value theorem of Kinderlehrer/Pedregal allows the following extension for generalized gradient controls $\boldsymbol{\mu} \in \mathcal{G}(\mathrm{K})$:

Theorem 2.7. (Mean value theorem for generalized gradient controls) ${ }^{30)}$ Assume that $\Omega \subset \mathbb{R}^{m}$ is the closure of a strongly Lipschitz domain with $\mathfrak{o} \in \operatorname{int}(\Omega)$. We consider sequences $\left\{w^{N}\right\}, \mathrm{K}$ and $\left\{x^{N}\right\}, W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$, which satisfy
a) $w^{N} \rightarrow w \in \mathrm{~K}\left(w^{N}\right.$ and $w \in \mathbb{R}^{n m}$ have to be understood as (n, m)-matrices),
b) $w^{N}+J x^{N}(t) \in \mathrm{K}(\forall) t \in \Omega \forall N \in \mathbb{N}$,
c) $\left\{w^{N}+J x^{N}\right\}$ generates a generalized gradient control $\boldsymbol{\mu} \in \mathcal{G}(\mathrm{K})$.

Then there exists a sequence of Lipschitz functions $\left\{\widetilde{x}^{N}\right\}, W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ with the following properties:

1) $\lim _{N \rightarrow \infty}\left\|\widetilde{x}^{N}\right\|_{C^{0}\left(\Omega, \mathbb{R}^{n}\right)}=0$,
2) $w^{N}+J \widetilde{x}^{N}(t) \in \mathrm{K}(\forall) t \in \Omega \forall N \in \mathbb{N}$,
3) The sequence $\left\{w^{N}+J \widetilde{x}^{N}\right\}$ generates a constant generalized gradient control $\boldsymbol{\nu}=\{\nu\} \in \mathcal{G}(\mathrm{K})$, which may be understood as the average of $\boldsymbol{\mu}$ with respect to t :
$\lim _{N \rightarrow \infty} \int_{\Omega} g\left(w^{N}+J x^{N}(t)\right) d t=\int_{\Omega} \int_{\mathrm{K}} g(v) d \mu_{t}(v) d t$

$$
\begin{equation*}
=\lim _{N \rightarrow \infty} \int_{\Omega} g\left(w^{N}+J \widetilde{x}^{N}(t)\right) d t=\int_{\Omega} \int_{\mathrm{K}} g(v) d \nu(v) d t \quad \forall g \in C^{0}(\mathrm{~K}, \mathbb{R}) ; \tag{2.5}
\end{equation*}
$$

4) It holds that $w=\left(\begin{array}{ccc}\int_{\mathrm{K}} v_{11} d \nu(v) & \ldots & \int_{\mathrm{K}} v_{1 m} d \nu(v) \\ \vdots & & \vdots \\ \int_{\mathrm{K}} v_{n 1} d \nu(v) & \ldots & \int_{\mathrm{K}} v_{n m} d \nu(v)\end{array}\right)$.

Theorem 2.7. justifies the definition of an average operator $A: \mathcal{G}(\mathrm{K}) \rightarrow r c a{ }^{p r}(\mathrm{~K})$, which assigns to any generalized gradient control $\boldsymbol{\mu} \in \mathcal{G}(\mathrm{K})$ a probability measure $A(\boldsymbol{\mu})=\nu$ as its t-average.
c) Properties of the lower semicontinuous quasiconvex envelope $f^{(q c)}$.

The following results have been obtained in [WAGNER 09A] :
Theorem 2.8. (Semicontinuity and continuity of $\left.f^{(q c)}\right)^{31)}$ Let a function $f \in \mathcal{F}_{\mathrm{K}}$ be given.

1) The function $f^{(q c)}: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ is lower semicontinuous.
2) $f^{(q c)}$ is continuous in every point $v \in \operatorname{int}(\mathrm{~K})$.
3) Moreover, the restriction $f^{(q c)} \mid \mathrm{K}$ is continuous in every point $v \in \operatorname{ext}(\mathrm{~K})$, and there the equations $f^{c}(v)=f^{(q c)}(v)=f(v)$ hold.
Consequently, from $\partial \mathrm{K}=\operatorname{ext}(\mathrm{K})$ it follows that $f^{(q c)} \mid \mathrm{K}$ is continuous on the whole set K . Then together with $f, f^{(q c)}$ belongs to \mathcal{F}_{K} as well.
4) [Berliocchi/Lasry 73], p. 144, Proposition 1, (i); independently proved again in [Kraut/Pickenhain 90], p. 391, Theorem 4.
5) [WAGnER 07], p. 10, Theorem 2.14., 2).
6) Ibid., p. 11, Theorem 2.16., as a generalization of [Kinderlehrer/Pedregal 91], p. 334, Theorem 2.1.
7) [WAGNER 09A], p. 89, Theorem 3.14. and 3.16., together with p. 95, Theorem 4.1.

Theorem 2.9. (Quasiconvexity and rank one convexity of $\left.f^{(q c)}\right)^{32)}$ Let a function $f \in \mathcal{F}_{\mathrm{K}}$ be given. The the function $f^{(q c)}: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ is quasiconvex (in the sense of Definition 1.2.) as well as rank one convex. Moreover, for all $v \in \mathbb{R}^{n m}$ it holds that

$$
\begin{equation*}
f^{c}(v) \leqslant f^{p c}(v) \leqslant f^{(q c)}(v) \leqslant f^{r c}(v) \leqslant f(v) \tag{2.7}
\end{equation*}
$$

For $n=1$ or $m=1$, the envelopes $f^{c}, f^{p c}, f^{(q c)}$ and $f^{r c}$ coincide.
d) Two representation theorems for $f^{(q c)}$.

For a function $f \in \mathcal{F}_{\mathrm{K}}$, the envelope $f^{(q c)}$ may be represented in the following way in terms of Jacobi matrices:

Theorem 2.10. (First representation theorem for $\left.f^{(q c)}\right)^{33)}$ Let a function $f \in \mathcal{F}_{\mathrm{K}}$ be given. Then its lower semicontinuous quasiconvex envelope $f^{(q c)}: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ admits the representation
where $\mathrm{R}=\overrightarrow{\mathfrak{o} v_{0}}$ denotes the ray through v_{0} starting from the origin, and $f^{*}\left(v_{0}\right)$ is defined by

$$
\begin{equation*}
f^{*}\left(v_{0}\right)=\inf \left\{\left.\frac{1}{|\Omega|} \int_{\Omega} f\left(v_{0}+J x(t)\right) d t \right\rvert\, x \in W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right), v_{0}+J x(t) \in \mathrm{K}(\forall) t \in \Omega\right\} \in \mathbb{R} \tag{2.9}
\end{equation*}
$$

In analogy to the convex envelope, ${ }^{34)} f^{(q c)}$ may be represented in terms of probability measures as well. For this purpose, we define subsets of probability measures as follows:

Definition 2.11. (Set-valued map $\left.\mathrm{S}^{(q c)}\right)^{35)}$ For any point $v_{0} \in \mathrm{~K}$, we define the following set of probability measures:
$\mathrm{S}^{(q c)}\left(v_{0}\right)=\left\{\nu \in\right.$ rca $^{p r}(\mathrm{~K}) \mid$ there exist sequences $\left\{v^{N}\right\}$, $\operatorname{int}(\mathrm{K})$ and $\left\{x^{N}\right\}, W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ with
a) $\lim _{N \rightarrow \infty} v^{N}=v_{0}$,
b) $\lim _{N \rightarrow \infty}\left\|x^{N}\right\|_{C^{0}\left(\Omega, \mathbb{R}^{n}\right)}=0$,
c) $v^{N}+J x^{N}(t) \in \mathrm{K}(\forall) t \in \Omega \forall N \in \mathbb{N}$,
d) $\left\{v^{N}+J x^{N}\right\}$ generates the constant generalized gradient control $\left.\boldsymbol{\nu}=\{\nu\}.\right\}$.

Theorem 2.12. (Second representation theorem for $\left.f^{(q c)}\right)^{36)}$ Let a function $f \in \mathcal{F}_{\mathrm{K}}$ be given. Then with the set-valued map $\mathrm{S}^{(q c)}: \mathrm{K} \rightarrow \mathfrak{P}\left(\operatorname{rca}^{p r}(\mathrm{~K})\right)$ from Definition 2.11., for all $v_{0} \in \mathrm{~K}$ it holds that

$$
\begin{equation*}
f^{(q c)}\left(v_{0}\right)=\operatorname{Min}\left\{\int_{\mathrm{K}} f(v) d \nu(v) \mid \nu \in \mathrm{S}^{(q c)}\left(v_{0}\right)\right\} \tag{2.11}
\end{equation*}
$$

[^2]
3. Lipschitz continuity and differentiability of $f^{(q c)}$.

a) Global Lipschitz continuity of $f^{(q c)}$.

Proof of Theorem 1.4., 1). ${ }^{37)}$ In order to prove the theorem, it suffices to show that the restriction $f^{c} \mid \mathrm{K}$ can be extended as a finite, convex function $h: \mathbb{R}^{n m} \rightarrow \mathbb{R}$ to the whole space. Indeed, the claimed extension h must be locally Lipschitz, in particular, in the neighbourhood of every point $v \in \mathrm{~K}$. Consequently, K may be covered with a family $\{\mathrm{K}(v, \delta(v))\}_{v \in \mathrm{~K}}$ of open balls in such a way that h is Lipschitz continuous on $\mathrm{K}(v, \delta(v))$ with constant $L(v)>0$, respectively. Since K is compact, the open covering $\{\mathrm{K}(v, \delta(v))\}_{v \in \mathrm{~K}}$ contains a finite subcovering with $\mathrm{K} \subset \mathrm{K}\left(v_{1}, \delta\left(v_{1}\right)\right) \cup \ldots \cup \mathrm{K}\left(v_{N}, \delta\left(v_{N}\right)\right)$. It follows that $h\left|\mathrm{~K}=f^{c}\right| \mathrm{K}$ is globally Lipschitz on K with the constant $\operatorname{Max}\left(L\left(v_{1}\right), \ldots, L\left(v^{N}\right)\right)$.
It remains to prove that the demanded extension of f^{c} exists. This will be done by use of the following lemma:

Lemma 3.1. ${ }^{38)}$ Let a convex body $\mathrm{K} \subset \mathbb{R}^{n m}$ and a convex function $g: \mathrm{K} \rightarrow \mathbb{R}$ be given. Assume that we can assign to every point $v_{0} \in \partial \mathrm{~K}$ another point $w\left(v_{0}\right) \in \operatorname{int}(\mathrm{K})$ with

$$
\begin{equation*}
\lim _{\tau \rightarrow 0+0} \frac{g\left(v_{0}+\tau\left(w\left(v_{0}\right)-v_{0}\right)\right)-g\left(v_{0}\right)}{\tau}>(-\infty) \tag{3.1}
\end{equation*}
$$

Then g admits a finite, convex extension $h: \mathbb{R}^{n m} \rightarrow \mathbb{R}$ to the whole space.
Let us fix a point $v_{0} \in \partial \mathrm{~K}$ and choose an arbitrary point $w\left(v_{0}\right) \in \operatorname{int}(\mathrm{K})$. Since $\partial \mathrm{K}=\operatorname{ext}(\mathrm{K})$, we have $f^{c}\left(v_{0}\right)=f\left(v_{0}\right)$. Choosing a number $0<\tau \leqslant 1$, we arrive at the following estimates:

$$
\begin{gather*}
f^{c}\left(v_{0}+\tau\left(w\left(v_{0}\right)-v_{0}\right)\right)-f^{c}\left(v_{0}\right) \geqslant \sum_{s} \lambda_{s} f\left(v_{s}\right)-f\left(v_{0}\right) \geqslant \sum_{s} \lambda_{s}\left(\varphi\left(v_{s}, v_{0}\right)-\varphi\left(v_{0}, v_{0}\right)\right) \tag{3.2}\\
=\sum_{s} \lambda_{s}\left\langle a\left(v_{0}\right), v_{s}-v_{0}\right\rangle=\left\langle a\left(v_{0}\right), \sum_{s} \lambda_{s} v_{s}-v_{0}\right\rangle=\left\langle a\left(v_{0}\right), \tau\left(w\left(v_{0}\right)-v_{0}\right)\right\rangle \\
\frac{f^{c}\left(v_{0}+\tau\left(w\left(v_{0}\right)-v_{0}\right)\right)-f^{c}\left(v_{0}\right)}{\tau} \geqslant\left\langle a\left(v_{0}\right), w\left(v_{0}\right)-v_{0}\right\rangle \geqslant-\sup _{v_{0} \in \partial \mathrm{~K}}\left|a\left(v_{0}\right)\right| \cdot \operatorname{Diam}(\mathrm{K})>(-\infty) \tag{3.3}
\end{gather*}
$$

where $v_{s} \in \mathrm{~K}$ and $\lambda_{s} \in[0,1], 1 \leqslant s \leqslant n m+1$, satisfy $\sum_{s} \lambda_{s}=1$ and $\sum_{s} \lambda_{s} v_{s}=v_{0}+\tau\left(w\left(v_{0}\right)-v_{0}\right)$. Since the estimate (3.3) holds independent of τ, we may conclude that $f^{c} \mid \mathrm{K}$ satisfies the condition from Lemma 3.1. Consequently, there exists a finite, convex extension of $f^{c} \mid \mathrm{K}$ to the whole space, and the proof is complete.

Proof of Theorem 1.5. We claim that $f^{(q c)} \mid \mathrm{K}$ is locally Lipschitz in the neighbourhood of every point $v \in \partial \mathrm{~K}$. By assumption, $f \mid \mathrm{K}$ is globally Lipschitz continuous, and by Theorem 1.4., 1) the same holds for $f^{c} \mid$ K. Denote the maximum of the Lipschitz constants of f and f^{c} by L. Consider now an arbitrary point $v \in \partial \mathrm{~K}=\operatorname{ext}(\mathrm{K})$ and fix a number $0<\varepsilon<1$. Then by Theorems 2.8., 3) and 2.9., for every point $w \in \mathrm{~K} \cap \mathrm{~K}(v, \varepsilon), w \neq v$, it holds that

$$
\begin{align*}
& f^{c}(w) \leqslant f^{(q c)}(w) \leqslant f(w) \text { and } f^{c}(v)=f^{(q c)}(v)=f(v) \Longrightarrow \tag{3.4}\\
& -L \cdot|w-v| \leqslant-\left|f^{c}(w)-f^{c}(v)\right| \leqslant f^{c}(w)-f^{c}(v) \leqslant f^{(q c)}(w)-f^{(q c)}(v) \leqslant f(w)-f(v) \\
& \\
&
\end{align*}
$$

[^3]${ }^{38)}$ [Finta 92], p. 28, Theorem 2.1.

Analogously, we find

$$
\begin{align*}
& -f(w) \leqslant-f^{(q c)}(w) \leqslant-f^{c}(w) \text { and } f^{c}(v)=f^{(q c)}(v)=f(v) \Longrightarrow \tag{3.5}\\
& -L \cdot|v-w| \leqslant-|f(v)-f(w)| \leqslant f(v)-f(w) \leqslant f^{(q c)}(v)-f^{(q c)}(w) \leqslant f^{c}(v)-f^{c}(w) \\
& \leqslant\left|f^{c}(v)-f^{c}(w)\right| \leqslant L \cdot|v-w|
\end{align*}
$$

and together

$$
\begin{equation*}
\sup _{w \in \mathrm{~K} \cap \mathrm{~K}(v, \varepsilon), w \neq v}\left|f^{(q c)}(v)-f^{(q c)}(w)\right| \leqslant L \cdot|v-w| . \tag{3.6}
\end{equation*}
$$

Consequently, $f^{(q c)} \mid \mathrm{K}$ is locally Lipschitz continuous not only on $\operatorname{int}(\mathrm{K})$ but on $\operatorname{int}(\mathrm{K}) \cup \partial \mathrm{K}=\mathrm{K}$. Now the arguments from the proof of Theorem 1.4., 1) can be repeated, and the proof is complete.
b) Differentiability points of $f^{(q c)}$.

We study a function $f \in \mathcal{F}_{\mathrm{K}}$, which is differentiable on int (K). Then, by use of Theorem 2.3., we can describe certain points where the differentiability of f is carried over to $f^{(q c)}$:

Theorem 3.2. Assume that a function $f \in \mathcal{F}_{\mathrm{K}}$ is differentiable on $\operatorname{int}(\mathrm{K})$. Then the following assertions hold:

1) (Differentiability in points with $f=f^{(q c)}$) The function $f^{(q c)}$ is differentiable in every point $v_{0} \in$ int (K) with $f\left(v_{0}\right)=f^{(q c)}\left(v_{0}\right)$, and for all indices $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$, it holds that

$$
\begin{equation*}
\frac{\partial f^{(q c)}}{\partial v_{i j}}\left(v_{0}\right)=\frac{\partial f}{\partial v_{i j}}\left(v_{0}\right) . \tag{3.7}
\end{equation*}
$$

2) (Differentiability in global minimizers of f) If $v_{0} \in \operatorname{int}(\mathrm{~K})$ is a global minimizer of f then $f^{(q c)}$ is differentiable in v_{0}, and for all indices $1 \leqslant i \leqslant n$, $1 \leqslant j \leqslant m$, it holds that

$$
\begin{equation*}
\frac{\partial f^{(q c)}}{\partial v_{i j}}\left(v_{0}\right)=\frac{\partial f}{\partial v_{i j}}\left(v_{0}\right)=0 . \tag{3.8}
\end{equation*}
$$

3) ${ }^{39)}$ (Differentiability in relation to "supporting measures") Assume that $\nu_{1} \in \mathrm{~S}^{(q c)}\left(v_{1}\right)$ is a probability measure realizing the minimum from Theorem 2.12. in a point $v_{1} \in \mathrm{~K}$, i. e.

$$
\begin{equation*}
f^{(q c)}\left(v_{1}\right)=\int_{\mathrm{K}} f(v) d \nu_{1}(v)=\operatorname{Min}\left\{\int_{\mathrm{K}} f(v) d \nu(v) \mid \nu \in \mathrm{S}^{(q c)}\left(v_{1}\right)\right\} . \tag{3.9}
\end{equation*}
$$

Then $f^{(q c)}$ is differentiable in every point $v_{0} \in \operatorname{supp}\left(\nu_{1}\right) \cap \operatorname{int}(\mathrm{K})$, and for all indices $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$, it holds that

$$
\begin{equation*}
\frac{\partial f^{(q c)}}{\partial v_{i j}}\left(v_{0}\right)=\frac{\partial f}{\partial v_{i j}}\left(v_{0}\right) . \tag{3.10}
\end{equation*}
$$

Proof. 1): Since $\varphi^{\prime}(v)=f^{(q c)}(v) \leqslant f(v)=\varphi^{\prime \prime}(v)$ for all $v \in \mathrm{~K}\left(v_{0}, \varepsilon\right) \subset \mathrm{K}$ (Theorem 2.9.), the assertion is an immediate consequence of Theorem 2.3.
2): On the one hand, at $v_{0} \in \operatorname{argmin}(f) \cap \operatorname{int}(\mathrm{K})$ the inequality $f^{(q c)}\left(v_{0}\right) \leqslant f\left(v_{0}\right)$ is satisfied. On the other hand, the second representation theorem for $f^{(q c)}$ (Theorem 2.12.) implies together with the theorem

[^4]about the convexity of the integral (cf. [Bourbaki 52], Chap. IV, § 6, p. 204, Corollaire) that the range of $f^{(q c)}$ is a subset of the closed convex hull of the (compact) range of f. Consequently, the relation $f^{(q c)}\left(v_{0}\right)<f\left(v_{0}\right)=\operatorname{Min}_{v \in \mathrm{~K}} f(v)$ cannot hold, and Theorem 2.3. can be applied again.
3): Let $\nu_{1} \in \mathrm{~S}^{(q c)}\left(v_{1}\right)$ be a probability measure with the claimed properties. Then by [WAGNER 09c], p. 615, Theorem 3.9., the values of $f^{(q c)}$ and $f\left(v_{0}\right)$ coincide for all $v_{0} \in \operatorname{supp}\left(\nu_{1}\right) \cap \operatorname{int}(\mathrm{K})$, and Theorem 2.3. may be applied again.
c) A sufficient condition for the differentiability of $f^{(q c)}$.

Proof of Theorem 1.6. - Step 1. Assume that a point $v_{0} \in \operatorname{int}(\mathrm{~K})$, a probability measure $\nu_{0} \in \mathrm{~S}^{(q c)}\left(v_{0}\right)$, a generating sequence $\left\{x^{N}\right\}, W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ and a number $0<\mu<1$ satisfy the assumptions a) - c) of the theorem. Then, in particular, it holds that

$$
\begin{equation*}
f^{(q c)}\left(v_{0}\right)=\int_{\mathrm{K}} f(v) d \nu_{0}(v), \tag{3.11}
\end{equation*}
$$

and the generalized controls $\left\{\delta_{v_{0}+J x^{N}(t)}\right\}$ converge in the sense of (2.3) to the constant generalized control $\left\{\nu_{0}\right\}$. We choose now a further point $w \in \operatorname{int}(\mathrm{~K})$. Since $v_{0}+J x^{N}(t) \in \mu \mathrm{K}(\forall) t \in \Omega \forall N \in \mathbb{N}$, we have

$$
\begin{equation*}
v_{0}+h\left(w-v_{0}\right)+J x^{N}(t) \in \mathrm{K} \quad(\forall) t \in \Omega \quad \forall N \in \mathbb{N} . \tag{3.12}
\end{equation*}
$$

for all sufficiently small numbers $h>0$. Then by Theorem 2.6., 2), a subsequence of the function sequence $\left\{v_{0}+h\left(w-v_{0}\right)+J x^{N}\right\}$ generates a generalized gradient control $\boldsymbol{\mu} \in \mathcal{G}(\mathrm{K})$, whose average $A(\boldsymbol{\mu})=\nu_{h} \in$ $r c a{ }^{p r}(\mathrm{~K})$ belongs to $\mathrm{S}^{(q c)}\left(v_{0}+h\left(w-v_{0}\right)\right)$ (we keep the index N). Applying again the Theorems 2.12. and 2.7., we obtain

$$
\begin{equation*}
f^{(q c)}\left(v_{0}+h\left(w-v_{0}\right)\right) \leqslant \int_{\mathrm{K}} f(v) d \nu_{h}(v)=\lim _{N \rightarrow \infty} \frac{1}{|\Omega|} \int_{\Omega} f\left(v_{0}+h\left(w-v_{0}\right)+J x^{N}(t)\right) d t \tag{3.13}
\end{equation*}
$$

Together with

$$
\begin{equation*}
f^{(q c)}\left(v_{0}\right)=\int_{\mathrm{K}} f(v) d \nu_{0}(v)=\lim _{N \rightarrow \infty} \frac{1}{|\Omega|} \int_{\Omega} f\left(v_{0}+J x^{N}(t)\right) d t \tag{3.14}
\end{equation*}
$$

we arrive at the following estimate for the difference quotient of $f^{(q c)}$:

$$
\begin{align*}
D\left(w-v_{0}, h\right)=\frac{1}{h}\left(f ^ { (q c) } \left(v_{0}\right.\right. & \left.\left.+h\left(w-v_{0}\right)\right)-f^{(q c)}\left(v_{0}\right)\right) \tag{3.15}\\
& \leqslant \lim _{N \rightarrow \infty} \frac{1}{|\Omega|} \int_{\Omega} \frac{1}{h}\left(f\left(v_{0}+J x^{N}(t)+h\left(w-v_{0}\right)\right)-f\left(v_{0}+J x^{N}(t)\right)\right) d t
\end{align*}
$$

- Step 2. Since \tilde{f} is, by assumption, differentiable on some open neighbourhood of K , it admits on K the following Taylor expansion ${ }^{40}$)

$$
\begin{equation*}
\tilde{f}(v+h z)-\tilde{f}(v)-\nabla \tilde{f}(v)^{\mathrm{T}} h z=R(v, h z) \tag{3.16}
\end{equation*}
$$

for all $v \in \mathrm{~K}, z \in \mathbb{R}^{n m}$ and all sufficiently small $h>0$. For fixed z and $h, R(v, h z)$ is continuous on K as a function of v. Moreover, the continuous differentiability of \tilde{f} implies its Fréchet differentiability, which may
${ }^{40)}$ In order to assure the existence of the Taylor expansion on the whole set K , we had to assume that \widetilde{f} is continuously differentiable even on a neighbourhood of K.
be expressed as follows: $\forall \varepsilon>0 \exists \delta(\varepsilon)>0$ such that for all sufficiently small $0<h \leqslant 1$ and for all $v \in \mathrm{~K}$ and $z \in \mathbb{R}^{n m}$ the implication

$$
\begin{equation*}
|h z| \leqslant \delta(\varepsilon) \Longrightarrow|R(v, h z)| \leqslant \varepsilon \cdot|h z| \tag{3.17}
\end{equation*}
$$

holds (cf. [Ioffe/Tichomirov 79], p. 36). On the one hand, (3.17) implies that for fixed $v \in \mathrm{~K}$ and $z \in \mathbb{R}^{n m}$

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{R(v, h z)}{h}=0 \tag{3.18}
\end{equation*}
$$

holds; on the other hand, we observe that for fixed $z \in \mathbb{R}^{n m}$, the function sequence

$$
\begin{equation*}
\left\{\frac{R(v,(1 / N) z)}{1 / N}\right\}, C^{0}(\mathrm{~K}, \mathbb{R}) \tag{3.19}
\end{equation*}
$$

is uniformly convergent with respect to $v \in \mathrm{~K}$, and the sequence possesses a continuous majorant. Consequently, from (3.15) we obtain:

$$
\begin{align*}
& D\left(w-v_{0}, h\right) \leqslant \lim _{N \rightarrow \infty} \frac{1}{|\Omega|} \int_{\Omega} \nabla \widetilde{f}\left(v_{0}+J x^{N}(t)\right)^{\mathrm{T}}\left(w-v_{0}\right) d t \tag{3.20}\\
& \\
& \quad+\lim _{N \rightarrow \infty} \frac{1}{|\Omega|} \int_{\Omega} \frac{R\left(v_{0}+J x^{N}(t), h\left(w-v_{0}\right)\right)}{h} d t \tag{3.21}\\
& =\int_{\mathrm{K}} \nabla \widetilde{f}(v)^{\mathrm{T}}\left(w-v_{0}\right) d \nu_{0}(v)+\int_{\mathrm{K}} \frac{R\left(v, h\left(w-v_{0}\right)\right)}{h} d \nu_{0}(v)
\end{align*}
$$

From the majorized convergence $\lim _{h \rightarrow 0} R\left(v, h\left(w-v_{0}\right)\right) / h=0$ for all $v \in \mathrm{~K}$ it follows that

$$
\begin{equation*}
D^{+}\left(w-v_{0}\right)=\limsup _{h \rightarrow 0+0} D\left(w-v_{0}, h\right) \leqslant \int_{\mathrm{K}} \nabla \widetilde{f}(v)^{\mathrm{T}}\left(w-v_{0}\right) d \nu_{0}(v)=E\left(w-v_{0}\right) \tag{3.22}
\end{equation*}
$$

- Step 3. We invoke the following lemmata about quasiconvex functions, which may take the value $(+\infty)$:

Lemma 3.3. ${ }^{41)}$ Let a point $w \in \mathbb{R}^{n m}$ and a number $\mu>0$ be given. Together with $f(v): \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$, the function $g(v)=f(w+\mu v)$ is quasiconvex as well.

Lemma 3.4. ${ }^{42)}$ Let a convex body $\mathrm{K} \subset \mathbb{R}^{n m}$ and a quasiconvex function $f: \mathbb{R}^{n m} \rightarrow \overline{\mathbb{R}}$ with $\operatorname{dom}(f)=\mathrm{K}$ be given. Assume that $f \mid \mathrm{K}$ is bounded. Then the restriction $f \mid \operatorname{int}(\mathrm{K})$ is rank one convex.

By Lemma 3.3., the function $g(v)=f^{(q c)}(v+h(w-v))=f^{(q c)}(h w+(1-h) v)$ is quasiconvex with respect to v together with $f^{(q c)}$. Since $\operatorname{dom}(g)=\left\{v \in \mathbb{R}^{n m} \left\lvert\, v \in \frac{1}{1-h} \mathrm{~K}-\{h w\}\right.\right\}$ and $w \in \operatorname{int}(\mathrm{~K})$, we obtain $\left.\mathrm{K}\left(v_{0}, \delta\right) \subset \operatorname{int}\left(\frac{1}{1-h} \mathrm{~K}-\{h w\}\right\}\right)$ for a sufficiently small $\delta>0$ and all sufficiently small $h>0$. Then by Lemma 3.4., the quasiconvexity of $g(v)$ implies its rank one convexity and separate convexity on $\mathrm{K}\left(v_{0}, \delta\right)$. Consequently, for all $w \in \operatorname{int}(\mathrm{~K})$ and all sufficiently small $h>0, D\left(w-v_{0}, h\right)$ is separately convex as a function of $\left(w-v_{0}\right)$ on the interior of its (convex) effective domain, and particularly on $\left(w-v_{0}\right) \in \mathrm{K}(\mathfrak{o}, \delta)$. In the pointwise forming of the upper limit, this property is carried over to $D^{+}\left(w-v_{0}\right)$. Moreover, D^{+}is positively homogeneous as a function of $\left(w-v_{0}\right)$ with $D^{+}\left(v_{0}-v_{0}\right)=0$ while $E\left(w-v_{0}\right)$ is a linear function

[^5]of $\left(w-v_{0}\right)$. Now we may apply Theorem 2.3. to $\varphi^{\prime}\left(w-v_{0}\right)=D^{+}\left(w-v_{0}\right)$ and $\varphi^{\prime \prime}=E^{+}\left(w-v_{0}\right)$: Both functions are differentiable in $\left(v_{0}-v_{0}\right)$ with
\[

$$
\begin{equation*}
\nabla D^{+}\left(v_{0}-v_{0}\right)=\nabla E^{+}\left(v_{0}-v_{0}\right)=\left(\int_{\mathrm{K}} \frac{\partial \tilde{f}}{\partial v_{i j}}(v) d \nu_{0}(v)\right)_{i, j} \tag{3.23}
\end{equation*}
$$

\]

We conclude that the functions D^{+}and E^{+}coincide for all $w \in \mathrm{~K}\left(v_{0}, \delta\right)$ and, consequently, for all $w \in \mathbb{R}^{n m}$. Thus we obtain:

$$
\begin{equation*}
D^{+}\left(w-v_{0}\right)=\sum_{i, j} \int_{\mathrm{K}} \frac{\partial \tilde{f}}{\partial v_{i j}}(v) d \nu_{0}(v)\left(w_{i j}-v_{0, i j}\right) \tag{3.24}
\end{equation*}
$$

- Step 4. From Theorem 2.3. we may infer in particular that, for a separately convex function g, the inequality (2.2) implies differentiability at v_{0} (inserting $\varphi^{\prime}=\varphi^{\prime \prime}=g$). Thus we apply Theorem 2.3. again in order to confirm the differentiability of $f^{(q c)}$ in v_{0} (which is a separately convex function on some convex neighbourhood of $v_{0} \in \operatorname{int}(\mathrm{~K})$). For this purpose, we claim that the relation

$$
\begin{equation*}
\limsup _{w \rightarrow \mathfrak{o}} \frac{1}{|w|}\left(f^{(q c)}\left(v_{0}+w\right)-f^{(q c)}\left(v_{0}\right)-\nabla D^{+}\left(v_{0}-v_{0}\right)^{\mathrm{T}} w\right) \leqslant 0 \tag{3.25}
\end{equation*}
$$

holds true. Assuming on the contrary that there exist a number $\delta>0$ and a sequence $\left\{w^{N}\right\}, \operatorname{int}(\mathrm{K}) \rightarrow \mathfrak{o}$ with

$$
\begin{equation*}
\delta<\frac{1}{\left|w^{N}\right|}\left(f^{(q c)}\left(v_{0}+w^{N}\right)-f^{(q c)}\left(v_{0}\right)-\nabla D^{+}\left(v_{0}-v_{0}\right)^{\mathrm{T}} w^{N}\right) \quad \forall N \in \mathbb{N} \tag{3.26}
\end{equation*}
$$

we may select a convergent subsequence of $\left\{w^{N} /\left|w^{N}\right|\right\}$ with limit w_{0} (we keep the index N). Since $f^{(q c)}$ is locally Lipschitz on $\operatorname{int}(\mathrm{K})$ (Theorem 2.2.), along this subsequence it holds that

$$
\begin{align*}
& \delta< \frac{1}{\left|w^{N}\right|}\left(f^{(q c)}\left(v_{0}+w^{N}\right) \pm f^{(q c)}\left(v_{0}+w_{0}\left|w^{N}\right|\right)-f^{(q c)}\left(v_{0}\right)\right)-\nabla D^{+}\left(v_{0}-v_{0}\right)^{\mathrm{T}} \frac{w^{N}}{\left|w^{N}\right|} \tag{3.27}\\
& \leqslant \frac{L}{\left|w^{N}\right|} \cdot\left|\left(v_{0}+w^{N}\right)-\left(v_{0}+w_{0}\left|w^{N}\right|\right)\right| \tag{3.28}\\
& \quad+\frac{1}{\left|w^{N}\right|}\left(f^{(q c)}\left(v_{0}+\left|w^{N}\right| w_{0}\right)-f^{(q c)}\left(v_{0}\right)\right)-\nabla D^{+}\left(v_{0}-v_{0}\right)^{\mathrm{T}} \frac{w^{N}}{\left|w^{N}\right|} \Longrightarrow \\
& 0<\delta<\limsup _{N \rightarrow \infty} \ldots=D^{+}\left(\left(w_{0}+v_{0}\right)-v_{0}\right)-\nabla D^{+}\left(v_{0}-v_{0}\right)^{\mathrm{T}}\left(\left(w_{0}+v_{0}\right)-v_{0}\right)=0, \tag{3.29}
\end{align*}
$$

and we arrive at a contradiction. Consequently, $f^{(q c)}$ is differentiable in $v_{0} \in \operatorname{int}(\mathrm{~K})$, and the proof is complete.

Remarks. 1) The technique to characterize the derivatives of semiconvex envelopes with the aid of "supporting measures" has been introduced in [Ball/Kirchieim/Kristensen 00] in the context of finite functions $f: \mathbb{R}^{n m} \rightarrow \mathbb{R}$. The proof of Theorem 1.6. as well as the example form Theorem 1.7. show the difficulties to carry over this approach to the case when f is allowed to take the value $(+\infty)$.
2) The conditions given in Theorem 1.6. resemble the fact that, under the assumptions of Theorem 1.4., 2), the gradient $\nabla f^{c}(v)$ of the convex envelope f^{c} equals to $\nabla f\left(\hat{v}_{s}\right)$ if the representation $f^{c}(v)=\sum_{s} \lambda_{s} f\left(v_{s}\right)$ with $v=\sum_{s} \lambda_{s} v_{s}$ and $\sum_{s} \lambda_{s}=1$ contains a point $\hat{v}_{s} \in \operatorname{int}(\mathrm{~K}) .{ }^{43)}$
${ }^{43)}$ Cf. [Griewank/Rabier 90], p. 698, (3.4).
3) In all of the situations described in Theorem 3.2., the Dirac measure $\delta_{v_{0}} \in \mathrm{~S}^{(q c)}\left(v_{0}\right)$ satisfies the conditions a) - c) of Theorem 1.6. together with the sequence $\{\mathfrak{o}\}, W_{0}^{1, \infty}\left(\Omega, \mathbb{R}^{n}\right)$ and the number $\mu=1 / 2$. In this sense, Theorem 1.6. may be regarded as a generalization of Theorem 3.2.
d) Example: The derivatives of $f^{(q c)}$ cannot be represented through a "supporting measure".

In this subsection, we provide an counterexample where the derivative of $f^{(q c)}$ in some differentiability point $v_{0} \in \operatorname{int}(\mathrm{~K})$ cannot be expressed by the formula (1.7). For this purpose, we take a function, which has been already investigated in [WAGNER 06B]. In the following, the points $v=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{R}^{2 \times 2}$ will be considered as (2, 2)-matrices.
Lemma 3.5. ${ }^{44}$ Let the points $v_{1}=\left(\begin{array}{rr}-1 & -1 \\ 0 & 0\end{array}\right), v_{2}=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$ and the convex set $\mathrm{C}=\left\{\left.\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right) \in \mathbb{R}^{2 \times 2} \right\rvert\, b^{2}+\right.$ $\left.c^{2}+d^{2} \leqslant 1\right\}$ be given. We define $\mathrm{K}_{1}=\operatorname{co}\left(\left\{v_{1}\right\} \cup \mathrm{C}\right), \mathrm{K}_{2}=\operatorname{co}\left(\left\{\mathrm{P}_{2}\right\} \cup \mathrm{C}\right)$ and $\mathrm{K}=\mathrm{K}_{1} \cup \mathrm{~K}_{2} \subset \mathbb{R}^{2 \times 2}$. Further, let the function $f: \mathbb{R}^{2 \times 2} \rightarrow \overline{\mathbb{R}}$ be defined through

$$
f(v)=\left\{\begin{array}{c|l}
\left(a^{2}-1\right)^{2} & v \in \mathrm{~K} \tag{3.30}\\
(+\infty) & \mid v \in \mathbb{R}^{n m} \backslash \mathrm{~K} .
\end{array}\right.
$$

Then the following assertions hold:

1) ${ }^{45)} \mathrm{K}$ is a convex body with $\mathfrak{o}_{4} \in \operatorname{int}(\mathrm{~K})$ and $\operatorname{ext}(\mathrm{K})=\left\{v_{1}, v_{2}\right\} \cup\left(\operatorname{ext}(\mathrm{C}) \backslash\left\{\left(\begin{array}{cc}0-1 \\ 0 & 0\end{array}\right)\right\}\right)$.
2) ${ }^{46)} f$ belongs to \mathcal{F}_{K}, and $f \mid \operatorname{int}(\mathrm{K})$ is infinitely differentiable.
3) Although f satisfies the assumptions a) and b) from Theorem 1.4., 1), its convex envelope $f^{c} \mid \mathrm{K}$ is discontinuous: For all points $\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right) \in \operatorname{ext}(\mathrm{C})$ with $b \neq(-1)$, we have $f^{c}\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right)=1$ but $f^{c}\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)=0$.
4) For all points $\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right) \in \operatorname{ext}(\mathrm{C})$ with $b \neq(-1)$, we have $f^{(q c)}\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right)=1$ and $f^{(q c)}\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)=0$ as well.

Proof. 3): Since $f(v) \geqslant 0$ for all $v \in \mathrm{~K}$, the assumptions a) and b) from Theorem 1.4., 1) can be satisfied with $\varphi\left(v_{0}, v\right) \equiv 0$ for all $v_{0} \in \partial \mathrm{~K}$. However, by [WAGNER 06B], p. 241 f ., Theorem 5, ii), we have $f^{c}\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right)=1$ for all points $\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right) \in \operatorname{ext}(\mathrm{C})$ with $b \neq(-1)$ and $f^{c}\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)=0$.
4): By Part 3) and Theorem 2.9., for all points $\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right) \in \operatorname{ext}(\mathrm{C})$ with $b \neq(-1)$ it holds that

$$
1=f^{c}\left(\begin{array}{ll}
0 & b \tag{3.31}\\
c & d
\end{array}\right) \leqslant f^{(q c)}\left(\begin{array}{ll}
0 & b \\
c & d
\end{array}\right) \leqslant f\left(\begin{array}{ll}
0 & b \\
c & d
\end{array}\right)=1,
$$

what means equality. Since $\left[v_{1}, v_{2}\right]$ is a rank-one segment, we conclude further that

$$
f^{r c}\left(\begin{array}{cc}
0 & -1 \tag{3.32}\\
0 & 0
\end{array}\right) \leqslant \frac{1}{2} f^{r c}\left(v_{1}\right)+\frac{1}{2} f^{r c}\left(v_{2}\right) \leqslant \frac{1}{2} f\left(v_{1}\right)+\frac{1}{2} f\left(v_{2}\right)=0
$$

and again with Theorem 2.9.

$$
0=f^{c}\left(\begin{array}{cc}
0 & -1 \tag{3.33}\\
0 & 0
\end{array}\right) \leqslant f^{(q c)}\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) \leqslant f^{r c}\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) \leqslant 0 .
$$

Proof of Theorem 1.7. - Step 1. Investigation of $f^{(q c)}$ in its discontinuity point $\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$. We abbreviate $w_{0}=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$ and choose a further point $w_{1}=\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right) \in \operatorname{ext}(\mathrm{C}) \cap \operatorname{ext}(\mathrm{K})$ with $b \neq(-1)$ and $\left|w_{1}-w_{0}\right| \leqslant 0.1$. By Lemma 3.5., 4), we have $f^{(q c)}\left(w_{1}\right)=1$ and $f^{(q c)}\left(w_{0}\right)=0$. Due to the radial continuity of $f^{(q c)}$ (Theorem 2.10.), there exist numbers $\delta_{0}, \delta_{1} \in\left(0, \frac{1}{2} \operatorname{Min}\left(\left|w_{0}\right|,\left|w_{1}\right|\right)\right]$ with

$$
\begin{align*}
& \left|w-w_{0}\right| \leqslant \delta_{0} \Longrightarrow \quad f^{(q c)}(w) \leqslant 0.05 \quad \forall w \in \mathrm{R}_{0}=\overrightarrow{\mathfrak{o} w_{0}} ; \tag{3.34}\\
& \left|w-w_{1}\right| \leqslant \delta_{1} \Longrightarrow \quad f^{(q c)}(w) \geqslant 0.95 \quad \forall w \in \mathrm{R}_{1}=\overrightarrow{\mathfrak{o} w_{1}} .
\end{align*}
$$

${ }^{44)}$ Cf. [Wagner 06b] , p. 241, Definition 7.
${ }^{45)}$ Ibid., p. 241, Lemma 1.
${ }^{46)}$ Ibid., p. 241 f., Theorem 5.

Here R_{0} and R_{1} denote the rays starting from \mathfrak{o} and passing through w_{0} resp. w_{1}. With $\delta_{2}=\operatorname{Min}\left(\delta_{0}, \delta_{1}\right)>0$, we determine two points $z_{0} \in \mathrm{R}_{0}$ and $z_{1} \in \mathrm{R}_{1}$ with $\left|z_{0}-w_{0}\right|=\delta_{2}$ and $\left|z_{1}-w_{1}\right|=\delta_{2}$. Since $f^{(q c)}$ is continuous in $z_{0}, z_{1} \in \operatorname{int}(\mathrm{~K})($ Theorem 2.8., 2) $)$, there exist numbers $\delta_{3}, \delta_{4}>0$ with

$$
\begin{align*}
& \left|z-z_{0}\right| \leqslant \delta_{3} \Longrightarrow\left|f^{(q c)}(z)-f^{(q c)}\left(z_{0}\right)\right| \leqslant 0.05 \quad \forall z \in \operatorname{int}(\mathrm{~K}) ; \tag{3.35}\\
& \left|z-z_{1}\right| \leqslant \delta_{4} \Longrightarrow\left|f^{(q c)}(z)-f^{(q c)}\left(z_{1}\right)\right| \leqslant 0.05 \quad \forall z \in \operatorname{int}(\mathrm{~K}) .
\end{align*}
$$

Consequently, we may choose

$$
\begin{equation*}
0<\delta_{5} \leqslant \operatorname{Min}\left(\frac{\delta_{2}}{2}, \delta_{3}, \delta_{4}, \frac{1}{2} \cdot\left|w_{1}-w_{0}\right|\right) \tag{3.36}
\end{equation*}
$$

with $\mathrm{K}\left(z_{0}, \delta_{5}\right) \subset \operatorname{int}(\mathrm{K}), \mathrm{K}\left(z_{1}, \delta_{5}\right) \subset \operatorname{int}(\mathrm{K})$ as well as

$$
\begin{align*}
& z \in \mathrm{~K}\left(z_{0}, \delta_{5}\right) \Longrightarrow \quad f^{(q c)}(z) \leqslant 0.1 \tag{3.37}\\
& z \in \mathrm{~K}\left(z_{1}, \delta_{5}\right) \Longrightarrow f^{(q c)}(z) \geqslant 0.9
\end{align*}
$$

- Step 2. Construction of a segment where $f^{(q c)}$ is differentiable $\lambda^{1}-a$. e. We denote by Z the convex set co $\left(\mathrm{K}\left(z_{0}, \delta_{5}\right) \cup \mathrm{K}\left(z_{1}, \delta_{5}\right)\right) \subset \operatorname{int}(\mathrm{K})$ and by N the λ^{4}-null set of the points $v \in \operatorname{int}(\mathrm{~K})$ where the differentiability of $f^{(q c)}$ fails. Together with $\mathrm{N}, \mathrm{Z} \cap \mathrm{N}$ is a λ^{4}-null set as well. Consider now the familiy $\left\{\mathrm{G}_{p}\right\}_{p \in \mathbb{R}^{3}}$ consisting of all straight lines parallel to the segment $\overline{w_{0} w_{1}}$. By [Dieudonné 75], p. 232, Theorem 13.21.5., for λ^{3}-almost all $p \in \mathbb{R}^{3}$, the intersections $\mathrm{Z} \cap \mathrm{N} \cap \mathrm{G}_{p}$ form one-dimensional null sets. Consequently, we may choose two points $y_{0} \in \mathrm{~K}\left(z_{0}, \delta_{5}\right)$ and $y_{1} \in \mathrm{~K}\left(z_{1}, \delta_{5}\right)$ in such a way that its connecting line segment $\mathrm{S}=\overline{y_{0} y_{1}}$ is parallel to $\overline{w_{0} w_{1}}$, and $f^{(q c)}$ is differentiable in λ^{1}-almost all points of S .
- Step 3. The claim that the partial derivatives of $f^{(q c)}$ admit a representation (1.7) in all differentiability points on S leads to a contradiction. By [Ball/Kirchheim/Kristensen 00], p. 340, Corollary 2.3., the derivatives of $f^{(q c)}$ are continuous on its range of definition. Further, they are uniformly bounded on $\mathrm{Z} \backslash \mathrm{N}$ since $f^{(q c)}$ is even global Lipschitz continuous on the compact set Z. Thus the restrictions of the partial derivatives of $f^{(q c)}$ to S belong to the space $L^{\infty}\left[S, \lambda^{1}\right]$, and we may apply [ELSTRODT 96], p. 301, Theorem 4.14., along S:

$$
\begin{equation*}
f^{(q c)}\left(y_{1}\right)-f^{(q c)}\left(y_{0}\right)=\int_{\mathrm{S}} \nabla f^{(q c)}(v)^{\mathrm{T}} \mathfrak{e} d v \tag{3.38}
\end{equation*}
$$

where \mathfrak{e} denotes the unit vector in direction of $\left(w_{1}-w_{0}\right)$. Assume now that the partial derivatives of $f^{(q c)}$ admit in all differentiability points $v_{0} \in \mathrm{~S}$ a representation

$$
\begin{equation*}
\frac{\partial f^{(q c)}}{\partial v_{i j}}\left(v_{0}\right)=\int_{\mathrm{K}} \frac{\partial \tilde{f}}{\partial v_{i j}}(v) d \nu_{0}(v), 1 \leqslant i \leqslant 2,1 \leqslant j \leqslant 2, \tag{3.39}
\end{equation*}
$$

where $\widetilde{f}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(a^{2}-1\right)^{2}$ and $\nu_{0} \in \mathrm{~S}^{(q c)}\left(v_{0}\right)$ is a probability measure with $f^{(q c)}\left(v_{0}\right)=\int_{\mathrm{K}} f(v) d \nu_{0}(v)$. Then it follows that

$$
\begin{equation*}
\left|\nabla f^{(q c)}\left(v_{0}\right)\right|=\left|\left(\int_{\mathrm{K}} \frac{\partial \tilde{f}}{\partial v_{i j}}(\tilde{v}) d \nu_{0}(\tilde{v})\right)_{i, j}\right|=\left|\int_{\mathrm{K}} \frac{\partial \tilde{f}}{\partial v_{11}}(\tilde{v}) d \nu_{0}(\tilde{v})\right| \leqslant \int_{\mathrm{K}}\left|\frac{\partial \tilde{f}}{\partial v_{11}}(\tilde{v})\right| d \nu_{0}(\tilde{v}) \tag{3.40}
\end{equation*}
$$

and since

$$
\frac{\partial \widetilde{f}}{\partial v_{11}}\left(\begin{array}{ll}
a & b \tag{3.41}\\
c & d
\end{array}\right)=4 a\left(a^{2}-1\right)
$$

and $v=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{K} \quad \Longrightarrow-1 \leqslant a \leqslant 1$, we obtain the inequality

$$
\begin{equation*}
\left|\nabla f^{(q c)}\left(v_{0}\right)\right| \leqslant \sup _{-1 \leqslant a \leqslant 1}\left|4 a\left(a^{2}-1\right)\right|=\frac{8}{9} \sqrt{3}=1.5396 \ldots<2 . \tag{3.42}
\end{equation*}
$$

Together with (3.37), we arrive at the following estimates:

$$
\begin{align*}
& 0.8 \leqslant f^{(q c)}\left(y_{1}\right)-f^{(q c)}\left(y_{0}\right) \leqslant \int_{y_{0}}^{y_{1}}\left|\nabla f^{(q c)}(v)\right| \cdot|\mathfrak{e}| \cdot|\cos \varangle(\ldots)| d v \leqslant\left|y_{1}-y_{0}\right| \cdot \sup _{v \in \mathrm{~S}}\left|\nabla f^{(q c)}(v)\right| \\
& \leqslant\left(\left|z_{1}-z_{0}\right|+2 \delta_{5}\right) \cdot 2 \leqslant 4\left|w_{1}-w_{0}\right| \leqslant 0.4 . \tag{3.43}
\end{align*}
$$

The contradiction shows that the claim about the possible representation (1.7) of the partial derivative $\partial f^{(q c)} / \partial v_{11}$ along S holds wrong. Consequently, the segment S contains some point v_{0} where $f^{(q c)}$ is differentiable but there exists no measure $\nu_{0} \in \mathrm{~S}^{(q c)}\left(v_{0}\right)$ with $f^{(q c)}\left(v_{0}\right)=\int_{\mathrm{K}} f(v) d \nu_{0}(v)$ and

$$
\begin{equation*}
\frac{\partial f^{(q c)}}{\partial v_{11}}\left(v_{0}\right)=\int_{\mathrm{K}} \frac{\partial \widetilde{f}}{\partial v_{11}}(v) d \nu_{0}(v) \tag{3.44}
\end{equation*}
$$

Whether the validity of the representation (1.7) in all differentiability points of $f^{(q c)}$ can be ensured under stronger assumptions about $\partial \mathrm{K}$ remains an open question.

References.

1. [Andrejewa/Klötzler 84a] Andrejewa, J. A.; Klötzler, R.: Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil I. Z. Angew. Math. Mech. 64 (1984), 35 44
2. [Andrejewa/Klötzler 84b] Andrejewa, J. A.; Klötzler, R.: Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil II. Z. Angew. Math. Mech. 64 (1984), 147 153
3. [Aubert/Kornprobst 06] Aubert, G.; Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Springer; New York etc. 2006, 2nd ed.
4. [Ball/Kirchheim/Kristensen 00] Ball, J. M.; Kirchheim, B.; Kristensen, J.: Regularity of quasiconvex envelopes. Calc. of Var. 11 (2000), $333-359$
5. [Ball/Murat 84] Ball, J. M.; Murat, F.: $W^{1, p}$-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), $225-253$
6. [Berliocchi/Lasry 73] Berliocchi, H.; Lasry, J.-M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973), 129 - 184
7. [Bonnesen/Fenchel 74] Bonnesen, T.; Fenchel, W.: Theorie der konvexen Körper. Springer; Berlin - Heidelberg - New York 1974
8. [Bourbaki 52] Bourbaki, N.: Éléments de Mathématique. Livre VI: Intégration, Chap. I - IV. Hermann; Paris 1952
9. [Brokate 85] Brokate, M.: Pontryagin's principle for control problems in age-dependent population dynamics. J. Math. Biology 23 (1985), 75 - 101
10. [Brøndsted 83] Brøndsted, A.: An Introduction to Convex Polytopes. Springer; New York - Heidelberg - Berlin 1983
11. [Brune/Maurer/Wagner 08] Brune, C.; Maurer, H.; Wagner, M.: Edge detection within optical flow via multidimensional control. BTU Cottbus, Preprint-Reihe Mathematik, Preprint Nr. M-02/2008. Accepted for publication: SIAM Journal on Imaging Sciences
12. [Conti 08] Conti, S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. J. Math. Pures Appl. 90 (2008), 15 - 30
13. [Dacorogna 08] Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer; New York etc. 2008, 2nd ed.
14. [Dacorogna/Marcellini 97] Dacorogna, B.; Marcellini, P.: General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Mathematica 178 (1997), 1 - 37
15. [Dacorogna/Marcellini 98] Dacorogna, B.; Marcellini, P.: Cauchy-Dirichlet problem for first order nonlinear systems. J. Funct. Anal. 152 (1998), $404-446$
16. [Dacorogna/Marcellini 99] Dacorogna, B.; Marcellini, P.: Implicit Partial Differential Equations. Birkhäuser; Boston - Basel - Berlin 1999
17. [Dieudonné 75] Dieudonné, J.: Grundzüge der modernen Analysis. Band 2. VEB Deutscher Verlag der Wissenschaften; Berlin 1975
18. [Elstrodt 96] Elstrodt, J.: Maß- und Integrationstheorie. Springer; Berlin etc. 1996
19. [Evans/Gariepy 92] Evans, L. C.; Gariepy, R. F.: Measure Theory and Fine Properties of Functions. CRC Press; Boca Raton etc. 1992
20. [Feichtinger/Tragler/Veliov 03] Feichtinger, G.; Tragler, G.; Veliov, V. M.: Optimality conditions for age-structured control systems. J. Math. Anal. Appl. 288 (2003), $47-68$
21. [Finta 92] Finta, Z.: On the extension of convex functions to the space \mathbb{R}^{n}. In: Muntean, I. (Ed.): Seminar on Mathematical Analysis. "Babes-Bolyai" University, Cluj-Napoca, Faculty of Mathematics, Research Seminars, Preprint Nr. 7 (1992), 23 - 32
22. [Franek/Franek/Maurer/Wagner 08] Franek, L.; Franek, M.; Maurer, H.; Wagner, M.: Image restoration and simultaneous edge detection by optimal control methods. BTU Cottbus, Preprint-Reihe Mathematik, Preprint Nr. M-05/2008. Submitted: Optim. Contr. Appl. Meth.
23. [Funk 62] Funk, P.: Variationsrechnung und ihre Anwendung in Physik und Technik. Springer; Berlin Göttingen - Heidelberg 1962 (Grundlehren 94)
24. [Gamkrelidze 78] Gamkrelidze, R. V.: Principles of Optimal Control Theory. Plenum; New York - London 1978
25. [Griewank/Rabier 90] Griewank, A.; Rabier, P. J.: On the smoothness of convex envelopes. Trans. Amer. Math. Soc. 322 (1990), 691 - 709
26. [Ioffe/Tichomirov 79] Ioffe, A. D.; Tichomirow, V. M.: Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften; Berlin 1979
27. [Kawohl 04] Kawohl, B.: From Mumford-Shah to Perona-Malik in image processing. Math. Meth. Appl. Sci. 27 (2004), 1803 - 1814
28. [Kinderlehrer/Pedregal 91] Kinderlehrer, D.; Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991), 329 - 365
29. [Kraut/Pickenhain 90] Kraut, H.; Pickenhain, S.: Erweiterung von mehrdimensionalen Steuerungsproblemen und Dualität. Optimization 21 (1990), $387-397$
30. [Lur'e 75] Lur'е, K. А. (Лурье, К. А.): Оптимальное управление в задачах математической физики. Наука; Москва 1975
31. [Müller 99] Müller, S.: Variational models for microstructure and phase transitions. In: Bethuel, F.; Huisken, G.; Müller, S.; Steffen, K.: Calculus of Variations and Geometric Evolution Problems. Springer; Berlin etc. 1999 (Lecture Notes in Mathematics 1713), $85-210$
32. [Pedregal 97] Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser; Basel - Boston Berlin 1997
33. [Schneider 93] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press; Cambridge 1993
34. [Ting 69A] Ting, T. W.: Elastic-plastic torsion of convex cylindrical bars. J. Math. Mech. 19 (1969), 531 - 551
35. [Ting 69B] Ting, T. W.: Elastic-plastic torsion problem III. Arch. Rat. Mech. Anal. 34 (1969), 228 - 244
36. [WAGner 96] Wagner, M.: Erweiterungen des mehrdimensionalen Pontrjaginschen Maximumprinzips auf me β bare und beschränkte sowie distributionelle Steuerungen. PhD Thesis. Universität Leipzig 1996
37. [WAGNER 06A] Wagner, M.: Mehrdimensionale Steuerungsprobleme mit quasikonvexen Integranden. Habilitation Thesis. BTU Cottbus 2006
38. [WAGNER 06B] Wagner, M.: Nonconvex relaxation properties of multidimensional control problems. In: Seeger, A. (Ed.): Recent Advances in Optimization. Springer; Berlin etc. 2006 (Lecture Notes in Economics and Mathematical Systems 563), 233 - 250
39. [WAGNER 07] Wagner, M.: On the lower semicontinuous quasiconvex envelope for unbounded integrands (II): Representation by generalized controls. EPF Lausanne, Publications de l'Institut d'analyse et calcul scientifique, Préimpression No. 09.2007. Accepted for publication: J. Convex Anal.
40. [Wagner 08A] Wagner, M.: Quasiconvex relaxation of multidimensional control problems. Adv. Math. Sci. Appl. 18 (2008), $305-327$
41. [WAGNER 08B] Wagner, M.: Quasiconvex relaxation of multidimensional control problems with integrands $f(t, \xi, v)$. Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig. Preprint Nr. 68/2008. Submitted: ESAIM: Control, Optimisation and Calculus of Variations.
42. [WAGNER 09A] Wagner, M.: On the lower semicontinuous quasiconvex envelope for unbounded integrands (I). ESAIM: Control, Optimisation and Calculus of Variations 15 (2009), 68 - 101
43. [WAGNER 09B] Wagner, M.: Pontryagin's maximum principle for multidimensional control problems in image processing. J. Optim. Theory Appl. 140 (2009), 543 - 576
44. [WAGNER 09C] Wagner, M.: Jensen's inequality for the lower semicontinuous quasiconvex envelope and relaxation of multidimensional control problems. J. Math. Anal. Appl. 355 (2009), 606 - 619

Last modification: 08.05. 2009
Author's address: Marcus Wagner, Brandenburg University of Technology, Cottbus, Department of Mathematics, P. O. B. 1013 44, 03013 Cottbus, Germany.

Homepage /e-mail: www.thecitytocome.de / wagner @math.tu-cottbus.de

[^0]: ${ }^{01)}$ [Dacorogna/Marcellini 97], [Dacorogna/Marcellini 98] and [Dacorogna/Marcellini 99].
 02) [Andrejewa/KlötZler 84a] and [Andrejewa/KlötZler 84b], p. 149 f.
 ${ }^{\text {03) }}$ [Funk 62], pp. 531 ff ., [LUR'e 75], pp. 240 ff ., [Ting 69A], p. 531 f., [Ting 69b] and [WAGNER 96], pp. 76 ff .
 04) [Brokate 85], [Feichtinger/Tragler/Veliov 03].
 05) [Brune/Maurer/Wagner 08], [Franek/Franek/Maurer/Wagner 08], [Wagner 06a], pp. 108 ff., and [WAGNER 09B].
 ${ }^{06)}$ In quality of examples, we mention polyconvex regularization terms in the hyperelastic image matching problem (cf. [Wagner 08b], pp. 28 ff .) and regularization terms of Perona-Malik type in the optical flow problem, cf. [Aubert/Kornprobst 06], pp. $90-93$, [Kawohl 04] and [Wagner 06a], p. 114.
 ${ }^{07)}$ [WAGNER 08A] , p. 309, Theorem 1.3., and [WAGNER 08b] , p. 4, Theorem 1.4.
 08) [WAGNER 07] - [WAGNER 09a].
 ${ }^{09)}$ In further analogy to the multidimensional calculus of variations, cf. [DACOROGNA 08], pp. 369 ff . and 416 ff .

[^1]: 17) [Evans/Gariepy 92], p. 131, Theorem 5.
[^2]: ${ }^{32)}$ [WAGNER 09A] , p. 93, Theorem 3.19., together with p. 95, Theorem 4.1. and 4.2. The inequality $f^{p c}(v) \leqslant f^{(q c)}(v)$ follows from [WAGNER 08b], p. 25.
 ${ }^{33)}$ [WAGNER 09A], p. 95, Theorem 4.1.
 ${ }^{34)}$ Cf. [Wagner 06a], p. 131, Theorem 10.19., 3).
 ${ }^{35)}$ Synopsis of [WAGNER 07], p. 15, Definition 3.1. and Lemma 3.2., as well as p. 21, Theorem 3.9., 2).
 ${ }^{36)}$ Ibid., p. 3, Theorem 1.4.

[^3]: ${ }^{37)}$ The author was unable to find a proof for Theorem 1.4., 1) in the literature.

[^4]: ${ }^{39)}$ Compare with [Ball/Kirchheim/Kristensen 00], p. 346, Proposition 3.6.

[^5]: 41) [Wagner 09a], p. 74, Lemma 2.10., (3).
 ${ }^{42)}$ Ibid., p. 74, Theorem 2.12.
