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1. Introduction.

Among the basic tasks of mathematical image processing is the image registration problem: 01) Let us assume
that two greyscale images are given, which will be described through functions I0(s), I1(s) : Ω→ [ 0 , 1 ] on
a rectangular domain Ω ⊂ R2. 02) Considering I0 as reference image, one wants to determine a vector field
x(s) : Ω→ R2 in order to satisfy the condition I1(s−x(s)) ≈ I0(s), thus bringing I1 in correspondence with
I0 in a best possible way. With the help of x and I1(s−x(s)), one tries to understand, for instance, whether
certain objects pictured in I0 and I1 are identical or if they have been subjected to intermittent alterations.
Depending on the a priori available information about the shape of the pictured objects and their motion
behaviour, very different approaches for the determination of the transformation x have been proposed in
the literature. Assuming, for example, that only pixels with the same intensity should be mapped one to
another, one arrives at the concept of the optical displacement or the optical flow, respectively. 03) Under
different viewpoints, x has been determined as a flow governed by a Navier-Stokes equation (viscous fluid
registration), 04) as a solution of a Monge-Kantorovič transportation problem, 05) as a rigid transformation
in a higher-dimensional space 06) or by means of level-set methods. 07)

In many situations, it may be assumed with good reason that the changes in I1 with respect to the reference
image I0 may be attributed to an elastic deformation of the pictured objects. This is particularly the case in
the broad field of medical imaging since the behaviour of human tissue is governed by hyperelastic material
laws. 08) For this reason, a large part of the literature is concerned with variational methods where x is
sought as a linear-elastic 09) or hyperelastic deformation, respectively. 10) Moreover, a number of authors is
performing the registration simultaneously with further tasks, e. g. segmentation. 11)

01) A detailed introduction may be found in [ Modersitzki 04 ] and [ Modersitzki 09 ] . Cf. also [ Hintermüller/

Keeling 09 ] .
02) In the literature, the registration problem has been considered for image data on a domain Ω ⊂ R3 as well (see,

e. g. [ Barbieri/Welk/Weickert 09 ] and [ Pöschl/Modersitzki/Scherzer 09 ] ). In the present paper, we

confine ourselves to the two-dimensional case.
03) [ Alvarez/Weickert/Sánchez 00 ] , [ Keeling/Ring 05 ] . Basic information about the concept of the optical flow

may be found in [ Aubert/Kornprobst 06 ] , pp. 250 ff.
04) [ Christensen/Rabbitt/Miller 96 ] .
05) [ Haker/Zhu/Tannenbaum/Angenent 04 ] and [ Museyko/Stiglmayr/Klamroth/Leugering 09 ] ; cf. also

[ Kaijser 98 ] .
06) [ Breitenreicher/Schnörr 09 ] .
07) [ Vemuri/Ye/Chen/Leonard 00 ] .
08) See e. g. [ Ogden 03 ] . Examples for polyconvex stored-energy functions applicable in this context may be found in

[ Balzani/Neff/Schröder/Holzapfel 06 ] .
09) [ Fischer/Modersitzki 03 ] , [ Haber/Modersitzki 04 ] , [ Henn/Witsch 00 ] , [ Henn/Witsch 01 ] , [ Moder-

sitzki 04 ] , pp. 77 ff.
10) [ Droske/Rumpf 04 ] , [ Droske/Rumpf 07 ] , [ Le Guyader/Vese 09 ] .
11) Cf. [ Droske/Rumpf 07 ] , [ Le Guyader/Vese 09 ] as well as [ Yezzi/Zollei/Kapur 01 ] .
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In the literature, the elastic registration problem has often been formulated as a multidimensional vari-
ational problem within Sobolev spaces. In these problems, the objective consists of a data fidelity term
for minimization of the grey value difference

(
I1(s − x(s)) − I0(s)

)2 and a regularization term, 12) which
will be chosen in such a way that the Euler-Lagrange equations of the problem describe a linear-elastic or
hyperelastic deformation, respectively. In most cases, the numerical solution of the problems is effected
with indirect methods. 13) In the present paper, this approach will be extended by incorporation of state
constraints as well as restrictions for the partial derivatives of x into the variational problems. 14) On the one
hand, such restrictions originate from additional information about the pictured objects (e. g. subregions,
which remain unchanged or move in a rigid way); on the other hand, the validity of the underlying elasticity
models is already bound by restrictions for the maximal shear stress generated by the deformation x. 15) Thus
the given variational problems will be transformed into state-constrained multidimensional control problems
of the so-called Dieudonné-Rashevsky type. 16) The numerical solution of these problems will be obtained
by an efficient direct method . 17) In contrast to the indirect methods from the Calculus of Variations, the
incorporation of additional state and control constraints produces no further difficulties within this direct
approach. 18)

All approaches as yet mentioned are based on the assumption that there is an overall correlation between
the greyscale intensity distributions as well as the geometrical properties of the template and reference
image (unimodal registration). If a correspondence between the greyscale intensities of I0 and I1 cannot be
expected from the outset, e. g. in the presence of data generated by different imaging devices or at different
wave lenghts, one arrives at the problem of multimodal registration, which must exclusively be based on the
geometrical information contained in the images. 19) In the present paper, however, we confine ourselves to
unimodal registration; the application of optimal control methods to the multimodal registration problem
will be reserved for a future publication.
The plan of the investigation is as follows: In Section 2 , we explain the variational as well as the optimal
control formulation of the elastic/hyperelastic image registration problem in more detail, adressing the
relevance of additional state constraints and control restrictions. In both cases, the problems will be related
to generical elasticity models. In order to justify the application of direct methods, we will then prove
existence theorems for the multidimensional control problems. Section 3 is devoted to the discretization
of the problems and the methods for their numerical solution. In Section 4 , we describe the visualization
and evaluation of our results and document the test images used in the experiments. Finally, in Section 5 ,
selected results of our numerical experiments will be presented and discussed.

12) For regularization methods in image processing, cf. [ Scherzer/Grasmair/Grossauer/Haltmeier/Lenzen 09 ] ,

particularly pp. 53 ff., Sect. 3 and 4.
13) See e. g. [ Modersitzki 04 ] , pp. 101 ff. On the contrary, [ Modersitzki 09 ] is concerned with direct solution

methods.
14) Following the example of [ Brune/Maurer/Wagner 09 ] , [ Franek/Franek/Maurer/Wagner 10 ] , [ Wagner

06 ] , pp. 108 ff., [ Wagner 08 ] , pp. 26 ff., Sect. 4, and [ Wagner 09 ] , pp. 558 ff., Sect. 4 and 5.
15) See, e. g. [ Chmelka/Melan 76 ] , pp. 38 – 45 (material sciences, linear-elastic model) as well as [ Gasser/Holz-

apfel 02 ] , p. 340 f., and the literature cited there (human tissue, different hyperelastic models).
16) Cf. the introduction in [ Wagner 09 ] , pp. 543− 545.
17) Cf. again [ Brune/Maurer/Wagner 09 ] and [ Franek/Franek/Maurer/Wagner 10 ] .
18) The difficulties with the treatment of restrictions within indirect methods become apparent e. g. in [ Haber/Moder-

sitzki 04 ] and [ Haber/Modersitzki 07a ] .
19) [ Droske/Rumpf 04 ] , [ Faugeras/Hermosillo 04 ] , [ Gallardo/Meju 03 ] , [ Haber/Modersitzki 07b] , [ Her-

mosillo/Chefd’hotel/Faugeras 02 ] , [ Liao/Yu/Bergsneider/Vese/Huang 03 ] .
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Notations.

Let Ω ⊂ Rm be the closure of a bounded Lipschitz domain (in strong sense). Then C
k(Ω,Rr) denotes

the space of r-dimensional vector functions f : Ω → Rr, whose components are continuous (k = 0) or k-
times continuously differentiable (k = 1, ... , ∞), respectively; Lp(Ω,Rr) denotes the space of r-dimensional
vector functions f : Ω → Rr, whose components are integrable in the pth power ( 1 6 p < ∞) or are
measurable and esentially bounded (p =∞). W 1,p

0 (Ω,Rr) denotes the Sobolev space of r-dimensional vector
functions f : Ω→ Rr with compactly supported components, possessing first-order weak partial derivatives
and belonging together with them to the space Lp(Ω,R) ( 1 6 p < ∞). W 1,∞

0 (Ω,Rr) is understood as the
Sobolev space of all r-vector functions f : Ω → Rr with Lipschitz continuous components and boundary
values zero. 20) Jx denotes the Jacobi matrix of the vector function x ∈W 1,p

0 (Ω,Rr). The symbol o denotes,
depending on the context, the zero element or the zero function of the underlying space. Finally, the
abbreviation “(∀) s ∈ A” has to be read as “for almost all s ∈ A” or “for all s ∈ A except a Lebesgue null
set”.

2. Elastic/hyperelastic image registration as a multidimensional control problem.

a) The variational approach.

As mentioned in the introduction, in the present paper we will consider generical elasticity models rather
than concrete ones. An image registration problem within Sobolev space, which is based on a linear-elastic
model, may be stated as follows: 21)

(V)lin : F (x) =
∫

Ω

(
I1( s− x(s) )− I0(s)

)2

ds + µ ·
∫

Ω

2∑
i,j=1

( ∂xi(s)
∂sj

+
∂xj(s)
∂si

)2

ds −→ inf ! ; (2.1)

x ∈W 1,p
0 (Ω,R2) (2.2)

with measurable, bounded image data I0(s), I1(s) : Ω → [ 0 , 1 ] , 22) 2 6 p < ∞ and a regularization
parameter µ > 0.
If the deformations of the imaged objects, instead, are supposed to obey a generic hyperelastic material law,
one arrives at the problem 23)

(V)hyp : F (x) =
∫

Ω

(
I1( s− x(s) )− I0(s)

)2

ds + µ ·
∫

Ω

(
c1
∥∥E2 − Jx(s)

∥∥ p
+ c2

(
Det (E2 − Jx(s) )

)2 )
ds −→ inf ! ; (2.3)

x ∈W 1,p
0 (Ω,R2) (2.4)

with image data I0, I1 as above, 2 6 p <∞, µ > 0 and positive weights c1, c2 > 0. E2 denotes the (2, 2)-unit
matrix. As matrix norm, we use ‖M ‖ = trace (MTM ). While the linear-elastic image registration leads

20) Cf. [ Evans/Gariepy 92 ] , p. 131, Theorem 5.
21) We refer to [ Henn/Witsch 01 ], p. 1079 f.
22) Note that the integral functionals (2.1) and (2.3) are well-defined for s − x(s) ∈ Ω (∀) s ∈ Ω only. This condition,

however, can be eliminated if the image data I0 and I1 are embedded into a sufficiently wide black frame, i. e. they

will be extended by zero to R2 \Ω; cf. [ Henn/Witsch 01 ] , p. 1078.
23) [ Droske/Rumpf 04 ] , p. 673 f.
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to a convex problem, the objective within the hyperelastic image registration problem involves a polyconvex
regularization term. 24)

b) Approximation of the fidelity term.

In the practical dealing with the problems (V)lin and (V)hyp the direct evaluation of the composite function
I1( s − x(s) ) effects a substantial difficulty. Assuming first that the given image data I1 are sufficiently
smooth, we use a second-order Taylor expansion 25)

I1( s− x(s) ) = I1(s) − ∇ I1(s)T x(s) + 1
2 x(s)T∇2I1(s)x(s) + R(x(s), y(s) ) (2.5)

with the third-order remainder term R(x(s), y(s) ) = 1
6 y(s) · ‖x(s) ‖3. Since in most cases, the assumption

I1 ∈ C3(Ω,R) is unrealistic, the derivatives of I1 will be replaced by further approximations ∇I1 ≈ DI1 ∈
L
∞(Ω,R2) and ∇2I1 ≈ D2I1 ∈ L

∞(Ω,R2×2) based on smoothing and forming of finite differences (see
(3.7)− (3.11) below). Thus the integrand within the fidelity term will be finally approximated by

I1( s− x(s) )− I0(s) ≈ I1(s) − DI1(s)T x(s) + 1
2 x(s)TD2I1(s)x(s) + 1

6 y(s) · ‖x(s) ‖3 − I0(s) . (2.6)

When inserting — motivated by the addition of uniform gradient constraints to (V)lin and (V)hyp below —
functions x ∈ W 1,∞

0 (Ω,R2) into (2.6), we may identify y( · ) as a L
∞ function. The character of x as an

elastic deformation will be preserved as long as y remains sufficiently small, which will be ensured by an
additional state constraint | y(s) | 6 ηmax.

c) Incorporation of constraints.

1) Constraints for the admissible shear stresses. On the one hand, these constraints are mandatory in order to
ensure the validity of the underlying elasticity models. 26) Independently, on the other hand, the introduction
of such constraints may be motivated by the necessity of an additional regularization of the problems. This
is particularly true if — after concretization of the material law — the former regularization parameter µ
must be fixed as a material constant. The modulus of the shear stress generated by the deformation x is
proportional to ‖ Jx(s) ‖, consequently, we arrive at a convex gradient constraint

Jx(s) ∈ K ⊂ R2×2 (∀) s ∈ Ω (2.7)

where K ⊂ R2×2 is a convex norm body with o ∈ int (K).

2) Landmarks. The correspondences

I1
(
sk − x(sk)

)
= I0(s̃k) ⇐⇒ x(sk) =

(
c1,k
c2,k

)
=
(
sk,1 − s̃k,1
sk,2 − s̃k,2

)
, 1 6 k 6 K , (2.8)

determine exactly the values of the deformation x in the points s1, ... , sK ∈ Ω.

3) Nearly undistorted subregions. The situation where the deformation x leaves a subregion Θ ⊂ Ω nearly
undistorted will be described by a state constraint

‖x(s) ‖ 6 ε ∀ s ∈ Θ (2.9)

24) Cf. [ Ball 77 ] and [ Dacorogna 08 ] , pp. 156 ff.
25) A first-order Taylor expansion leads back to the determination of the optical flow.
26) See Footnote 15 above.
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with sufficiently small ε > 0 (if ε = 0 then Θ will be not affected at all).

4) Subregions subjected to a pure translation. In this case, on the subregion Θ ⊆ Ω we have s−x(s) = s− s0

and Jx(s) = o. Consequently, we will introduce

‖ Jx(s) ‖ 6 ε (∀) s ∈ Θ (2.10)

with sufficiently small ε > 0 as an additional gradient constraint.

The introduction of polyconvex gradient constraints, which enforce a rigid deformation or a bijective defor-
mation of a subregion, will be investigated in [ Wagner 10 ] .

d) Reformulation of the problems within the framework of multidimensional control.

To (V)lin and (V)hyp, we add the convex gradient restriction (2.7) thus converting both problems into multi-
dimensional control problems of Dieudonné-Rashevsky type. Further, we replace the term I1(s − x(s))
within the objectives by its approximation (2.6). According to the discussion in Subsection 2.b), y will be
specified as a measurable function, which is uniformly bounded by ηmax. As a result, we obtain the following
state-constrained optimal control problems:

(P)lin : F (x, y) =
∫

Ω

(
I1(s) − DI1(s)T x(s) + 1

2 x(s)TD2I1(s)x(s) + 1
6 y(s) ‖x(s) ‖3 − I0(s)

)2

ds

+ µ ·
∫

Ω

2∑
i,j=1

( ∂xi(s)
∂sj

+
∂xj(s)
∂si

)2

ds −→ inf ! ; (2.11)

(x, y) ∈W 1,p
0 (Ω,R2) × L

∞(Ω,R) ; (2.12)

| y(s) | 6 ηmax (∀) s ∈ Ω ; (2.13)

Jx(s) ∈ K (∀) s ∈ Ω (2.14)

(linear-elastic image registration) and

(P)hyp : F (x, y) =
∫

Ω

(
I1(s) − DI1(s)T x(s) + 1

2 x(s)TD2I1(s)x(s) + 1
6 y(s) ‖x(s) ‖3 − I0(s)

)2

ds

+ µ ·
∫

Ω

(
c1
∥∥E2 − Jx(s)

∥∥ p + c2
(

Det (E2 − Jx(s) )
)2 )

ds −→ inf ! ; (2.15)

(x, y) ∈W 1,p
0 (Ω,R2) × L

∞(Ω,R) ; (2.16)

| y(s) | 6 ηmax (∀) s ∈ Ω ; (2.17)

Jx(s) ∈ K (∀) s ∈ Ω (2.18)

(hyperelastic image registration) with measurable, bounded data I0, I1 ∈ L∞(Ω,R), DI1 ∈ L∞(Ω,R2) and
D2I1 ∈ L∞(Ω,R2×2), 1 6 p <∞, an uniform bound ηmax > 0 for the fitting variable in the remainder in the
Taylor expansion, a regularization parameter µ > 0 and positive weights c1, c2 > 0. K ⊂ R2×2 is a convex
body with o ∈ int (K). Further state constraints and control restrictions of the shape (2.8)− (2.10) may
be easily included. As a consequence of the control restrictions (2.14) and (2.18), all feasible pairs (x, y) in
(P)lin and (P)hyp belong to the space W 1,∞

0 (Ω,R2)× L
∞(Ω,R) independent of the choice of the exponent

1 6 p <∞.

Remarks. 1) Note that certain rigid motions are contained within the feasible domains of (P)lin as well
as of (P)hyp. Since K ⊂ R2×2 contains a four-dimensional cube [R , R ]4 in a neighborhood of the origin,
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all rotations satisfying Jx(s) = E2 −
(

cosα −sinα
sinα cosα

)
with |α | 6 arcsin(R) and |α | 6 arccos(1− R) as well as

arbitrary translations on given subregions Θ ⊆ Ω are feasible.

2) In the numerical experiments in Sections 3− 5, the convex body in the control restrictions will be imme-
diately K = [−R , R ]4 where R > 0 is considered as an additional parameter.

e) Existence of global minimizers.

In order to justify the application of direct methods to the numerical solution of the optimal control problems
(P)lin and (P)hyp, we must first ensure the existence of global minimizers. In our proofs, we refer to theorems
from [ Dacorogna 08 ] and [ Wagner 08 ] .

Theorem 2.1. (Existence theorem for (P)lin ) 27) 1) Let the problem (P)lin be given with all assumptions
about the data mentioned above. Then the problem admits a global minimizer (x̂, ŷ) ∈ W

1,∞
0 (Ω,R2) ×

L
∞(Ω,R).

2) Assertion 1) remains true if (P)lin is augmented with additional state constraints of the shape (2.8), (2.9)
or control constraints of the shape (2.10) where Θ ⊂ Ω, int (Θ) 6= Ø, is a compact subset of Ω.

Proof. 1) • Step 1: The problem (P)lin admits a minimizing sequence with a feasible limit element. Since
F (x, y) > 0 and the zero solution is feasible, problem (P)lin admits a minimizing sequence { (xN , yN ) } . It
follows from (2.13) and (2.14) that ‖xN ‖W 1,∞

0 (Ω,R2) as well as ‖ yN ‖L∞(Ω,R) remain bounded. Consequently,
after a passage to appropriate subsequences we may assume that the minimizing sequence possesses a limit
element (x̂, ŷ) ∈W 1,∞

0 (Ω,R2)× L∞(Ω,R) with

xN →C0(Ω,R2) x̂ , JxN
∗−⇀ L∞(Ω,R4)Jx̂ and yN

∗−⇀ L∞(Ω,R)ŷ . (2.19)

Under the weak∗-convergence of { yN } and { JxN } , the convex state constraint (2.13) as well as the convex
gradient constraint (2.14) will be conserved, and (x̂, ŷ) is feasible in (P)lin.

• Step 2: Decomposition of the objective. Denote by ξ ∈ R2, η ∈ R and v ∈ R2×2 the placeholders for x, y
and Jx. Further, let %K( · ) denote the indicator function of the convex body K. Then the integrand within
the objective admits the following decomposition:

f(s, ξ, η, v) =
(
f0(s, ξ) + µ ·

2∑
i,j=1

(
vij + vji

)2 + %K(v)
)

+
(
η · f1(s, ξ) + η2 · f2(s, ξ)

)
with (2.20)

f0(s, ξ) =
(
I1(s)−DI1(s)T ξ + 1

2 ξ
TD2I1(s) ξ − I0(s)

)2 ; (2.21)

f1(s, ξ) = 1
3 | ξ |

3
(
I1(s)−DI1(s)T ξ + 1

2 ξ
TD2I1(s) ξ − I0(s)

)
; (2.22)

f2(s, ξ) = 1
36 | ξ |

6 . (2.23)

• Step 3: Application of lower semicontinuity theorems. Due to the essential boundedness of I0, I1, DI1 and
D2I1, the first member in (2.20) obeys the growth condition 28)

∣∣ f0(s, ξ) + µ ·
2∑

i,j=1

(
vij + vji

)2 + %K(v)
∣∣

6
( ∣∣ I1(s)− I0(s)

∣∣ +
∣∣DI1(s)

∣∣ · ∣∣ ξ ∣∣+ 1
2

∥∥D2I1(s)
∥∥ · ∣∣ ξ ∣∣2 )2

+ µ ·
2∑

i,j=1

(
vij + vji

)2 (2.24)

6
(

2 + C1

∣∣ ξ ∣∣+ 1
2 C2

∣∣ ξ ∣∣2 )2

+ µ ·
2∑

i,j=1

(
vij + vji

)2 (∀) s ∈ Ω ∀ (ξ, v) ∈ R2×K , (2.25)

27) Cf. [ Wagner 08 ] , p. 27, Theorem 4.1., 1).
28) Cf. [ Wagner 08 ] , p. 27, (4.10)− (4.11).
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consequently, we may apply [ Wagner 08 ] , p. 4, Theorem 1.4., to the expression, and its convexity with
respect to v implies the lower semicontinuity relation∫

Ω

(
f0(s, x̂(s)) + µ ·

2∑
i,j=1

( ∂x̂i
∂sj

(s) +
∂x̂j
∂si

(s)
)2 )

ds

6 lim inf
N→∞

∫
Ω

(
f0(s, xN (s)) + µ ·

2∑
i,j=1

( ∂xNi
∂sj

(s) +
∂xNj
∂si

(s)
)2 )

ds . (2.26)

From f2(s, ξ) > 0, we obtain after inserting of ξ = x̂(s) the following estimate for the second member:

η · f1(s, x̂(s)) + η2 · f2(s, x̂(s)) > η · f1(s, x̂(s)) (∀) s ∈ Ω ∀ (ξ, η, v) ∈ R2 × R ×R2×2 , (2.27)

where f1( · , x̂( · )) ∈ L1(Ω,R). Consequently, [ Dacorogna 08 ] , p. 96, Theorem 3.23., together with p. 97,
Remark 3.25., (ii), may be applied:∫

Ω

(
ŷ(s) f1(s, x̂(s)) + ŷ(s)2 f2(s, x̂(s))

)
ds 6 lim inf

N→∞

∫
Ω

(
yN (s) f1(s, x̂(s)) + yN (s)2 f2(s, x̂(s))

)
ds . (2.28)

From the uniform convergence of {xN } and the essential boundedness of { yN } , it follows that

lim inf
N→∞

∣∣∣ ∫
Ω

(
yN (s) f1(s, xN (s)) + yN (s)2 f2(s, xN (s)) − yN (s) f1(s, x̂(s)) − yN (s)2 f2(s, x̂(s))

)
ds
∣∣∣

6 lim inf
N→∞

∫
Ω

( ∣∣ f1(s, xN (s))− f1(s, x̂(s))
∣∣ · ηmax +

∣∣ f2(s, xN (s))− f2(s, x̂(s))
∣∣ · η2

max

)
ds = 0 . (2.29)

• Step 4: Conclusion. Denoting the minimal value of (P)lin by m, we obtain from (2.26), (2.28) and (2.29):

m 6 F (x̂, ŷ) 6 lim inf
N→∞

∫
Ω

(
f0(s, xN (s)) + µ ·

2∑
i,j=1

( ∂xNi
∂sj

(s) +
∂xNj
∂si

(s)
)2 )

ds (2.30)

+ lim inf
N→∞

∫
Ω

(
yN (s) f1(s, x̂(s)) + yN (s)2 f2(s, x̂(s))

)
ds

+ lim inf
N→∞

∫
Ω

(
yN (s) f1(s, xN (s)) + yN (s)2 f2(s, xN (s)) − yN (s) f1(s, x̂(s)) − yN (s)2 f2(s, x̂(s))

)
ds

6 lim inf
N→∞

F (xN , yN ) = lim
N→∞

F (xN , yN ) = m,

and (x̂, ŷ) is a global minimizer of (P)lin.

2) After addition of further state constraints (2.8), (2.9) or control restrictions (2.10) to (P)lin, the zero
solution remains feasible. Consequently, for the new problem there exists a minimizing sequence { (xN , yN ) }
with xN →C0(Ω,R2) x̂, JxN ∗−⇀ L∞(Ω,R4)Jx̂ and yN −⇀L∞(Ω,R) ŷ as well, for which all conclusions from
Part 1) remain valid. We have only to check whether its limit element obeys the additional constraints.
For (2.8) and (2.9), this holds as a consequence of the uniform convergence of {xN } and the continuity of
the norm in R2; for (2.10), we observe that the weak∗-convergence of { JxN } im L

∞(Ω,R4) implies the
weak∗-convergence of the restrictions { JxN

∣∣Θ } in L
∞(Θ,R4). However, the convex constraint (2.10) on

Θ will be conserved under the passage to the weak∗-limit element.

Theorem 2.2. (Existence theorem for (P)hyp ) 29) 1) Under the assumptions about the data mentioned
above, the problem (P)hyp admits a global minimizer (x̂, ŷ) ∈W 1,∞

0 (Ω,R2) × L
∞(Ω,R) as well.

29) Cf. [ Wagner 08 ] , p. 29, Theorem 4.2., 1).
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2) Assertion 1) remains true if (P)hyp is augmented with additional state constraints of the shape (2.8),
(2.9) or control constraints of the shape (2.10) where Θ ⊂ Ω, int (Θ) 6= Ø, is a compact subset of Ω.

Proof. 1) Reasoning as in the proof of Theorem 2.1., 1), we represent the integrand as (2.31)

f(s, ξ, η, v) =
(
f0(s, ξ) + µ ·

(
c1
∥∥E2 − v

∥∥p+ c2
(

Det (E2 − v)
)2 )+ %K(v)

)
+
(
η · f1(s, ξ) + η2 · f2(s, ξ)

)
with f0, f1 and f2 according to (2.21)− (2.23). The first member is polyconvex with respect to v ∈ R2×2

and satisfies the growth condition 30)

∣∣∣ f0(s, ξ) + µ ·
(
c1
∥∥E2 − v

∥∥p + c2
(

Det (E2 − v)
)2 ) + %K(v)

∣∣∣ (2.32)

6
( ∣∣ I1(s)− I0(s)

∣∣ +
∣∣DI1(s)

∣∣ · ∣∣ ξ ∣∣+ 1
2

∥∥D2I1(s)
∥∥ · ∣∣ ξ ∣∣2 )2

+ µ ·
(
c1
∥∥E2 − v

∥∥p + c2
(

Det (E2 − v)
)2 )

6
(

2 + C1

∣∣ ξ ∣∣+ 1
2 C2

∣∣ ξ ∣∣2 )2

+ µ ·
(
c1
∥∥E2 − v

∥∥p + c2
(

Det (E2 − v)
)2 ) (∀) s ∈ Ω ∀ (ξ, v) ∈ R2×K ,

consequently, [ Wagner 08 ] , p. 4, Theorem 1.4., implies the lower semicontinuity relation∫
Ω

(
f0(s, x̂(s)) + µ ·

(
c1
∥∥E2 − Jx̂(s)

∥∥p + c2
(

Det (E2 − Jx̂(s) )
)2 ))

ds

6 lim inf
N→∞

∫
Ω

(
f0(s, xN (s)) + µ ·

(
c1
∥∥E2 − JxN (s)

∥∥p + c2
(

Det (E2 − JxN (s) )
)2 ))

ds . (2.33)

Then the existence of a global minimizer may be ensured as in Theorem 2.1., 1).

2) This assertion may be proven in complete analogy to Theorem 2.1., 2).

3. Numerical solution by direct methods.

For the numerical solution of the multidimensional control problems (P)lin and (P)hyp, we adopt the prin-
ciple “first discretize, then optimize”. In all problems, we will work with the control restriction Jx(s) ∈
K = [−R , R ]4. Within the square domain Ω = [ 0 , K ] × [ 0 , L ] with K = L = 2N , we generate
a regular triangulation, 31) introducing first a grid of squares Qk,l with edge length 1 and then splitting
every square along the principal diagonal into two triangles ∆′k,l = ∆(sk−1,l−1, sk,l−1, sk,l ) and ∆′′k,l =

∆(sk−1,l−1, sk,l , sk−1,l). With f(s, ξ, η, v) as abbreviation for the integrand within the objective, the dis-
cretized problem may be stated as follows: 32)

(D)N : F̃
(
ξ

(1)
0,0 , ... , ξ

(2)
K,L, η0,0, ... , ηK,L, v

(1,1)
1,1 , ... , v

(2,4)
K,L

)
=

1
2
·
K∑
k=1

L∑
l=1

(
f
(
sk−1,l−1,

(
ξ

(1)
k−1,l−1

ξ
(2)
k−1,l−1

)
,

ηk−1,l−1 ,

(
v

(1,1)
k,l v

(1,2)
k,l

v
(2,1)
k,l v

(2,2)
k,l

))
+ f

(
sk,l,

(
ξ

(1)
k,l

ξ
(2)
k,l

)
, ηk,l ,

(
v

(1,3)
k,l v

(1,4)
k,l

v
(2,3)
k,l v

(2,4)
k,l

)))
−→ inf ! ; (3.1)

(
ξ

(1)
0,0 , ... , ξ

(2)
K,L, η0,0, ... , ηK,L, v

(1,1)
1,1 , ... , v

(2,4)
K,L

)
∈ R3(K+1)(L+1)×R8KL ; (3.2)

30) Cf. [ Wagner 08 ] , p. 29, (4.17)− (4.18).

31) Cf. [ Goering/Roos/Tobiska 93 ] , pp. 28 and 40, (Z1)− (Z4), and p. 138, (Z5).

32) Cf. [ Franek/Franek/Maurer/Wagner 10 ] , p. 3 f., (2.7)− (2.14).
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ξ
(i)
0,l = ξ

(i)
K,l = 0 , ξ(i)

k,0 = ξ
(i)
k,L = 0 , i = 1, 2 , 0 6 k 6 K , 0 6 l 6 L ; (3.3)(

v
(i,1)
k,l v

(i,2)
k,l

v
(i,3)
k,l v

(i,4)
k,l

)
=

(
ξ

(i)
k,l−1 − ξ

(i)
k−1,l−1 ξ

(i)
k,l − ξ

(i)
k,l−1

ξ
(i)
k,l − ξ

(i)
k−1,l ξ

(i)
k−1,l − ξ

(i)
k−1,l−1

)
, i = 1, 2 , 1 6 k 6 K , 1 6 l 6 L ; (3.4)

∣∣ ηk,l ∣∣ 6 ηmax , 0 6 k 6 K , 0 6 l 6 L ; (3.5)∣∣ v(i,1)
k,l

∣∣ 6 R ,
∣∣ v(i,2)
k,l

∣∣ 6 R ,
∣∣ v(i,3)
k,l

∣∣ 6 R ,
∣∣ v(i,4)
k,l

∣∣ 6 R , i = 1, 2 , 1 6 k 6 K , 1 6 l 6 L ; (3.6)

The partial derivatives of I1 have been approximated in Qk,l as follows:

∂I1
∂s1

(s) ≈ Ds1I1(s) =
1
9
·

1∑
i,j=−1

( 1
2
(
I1(sk+1+i , l+j)− I1(sk−1+i , l+j)

) )
; (3.7)

∂I1
∂s2

(s) ≈ Ds2I1(s) =
1
9
·

1∑
i,j=−1

( 1
2
(
I1(sk+i , l+1+j)− I1(sk+i , l−1+j)

) )
; (3.8)

∂2I1
(∂s1)2

(s) ≈ D2
s1s1I1(s) =

1
9
·

1∑
i,j=−1

( 1
2
(
I1(sk+1+i , l+j)− 2 I1(sk+i , l+j) + I1(sk−1+i , l+j)

) )
; (3.9)

∂2I1
∂s1 ∂s2

(s) ≈ D2
s1s2I1(s) =

1
9
·

1∑
i,j=−1

( 1
4
(
I1(sk+1+i , l+1+j)− I1(sk−1+i , l+1+j) (3.10)

− I1(sk+1+i , l−1+j) + I1(sk−1+i , l−1+j)
) )

;

∂2I1
(∂s2)2

(s) ≈ D2
s2s2I1(s) =

1
9
·

1∑
i,j=−1

( 1
2
(
I1(sk+i , l+1+j)− 2 I1(sk+i , l+j) + I1(sk+i , l−1+j)

) )
. (3.11)

The evaluation of the necessary optimality conditions (Karush-Kuhn-Tucker conditions) for (D)N results in
large systems of nonlinear equations, which may be solved with high precision and efficiency by interior-point
methods. 33) We used MATLAB as the input/output platform for the image data; the discretized problem has
been formulated with the help of the modelling language AMPL 34) and then transferred to the interior-point
solver IPOPT. 35) The results have been represented and evaluated with MATLAB again.
The convergence of the discretization method with respect to the x-component of the solutions can be ensured
in analogy to [ Franek/Franek/Maurer/Wagner 10 ] , p. 10, Corollary 2.7., assuming that the image
data I1 are sufficiently smooth. 36) We dispensed, however, in the present paper completely with assumptions
allowing the proof of an analogous error estimate for ‖ y − ŷ ‖L∞(Ω,R).

37)

33) See, for example, [ Jansen 97 ] .
34) [ Fourer/Gay/Kernighan 03 ] .
35) [ Laird/Wächter 09 ] , [ Wächter/Biegler 06 ] . The experiments have been performed with version 3.6.1.,

compiled with the MA27 routine.
36) The assumptions [ Franek/Franek/Maurer/Wagner 10 ] , p. 5, (2.19) and (2.20), will be satisfied e. g. for

I1 ∈ C2
0(Ω,R) ∩ C3(Ω,R) since the convergence of the finite-difference approximations of the first and second partial

derivatives of the function I1 can be estimated by the mesh size.
37) In order to make the convergence theorem from [ Franek/Franek/Maurer/Wagner 10 ] applicable to the y-

component of the solutions as well, one had to assume e. g. y ∈ W 1,∞
0 (Ω,R) together with an additional gradient

constraint ‖∇y ‖ 6 R̃.
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4. Evaluation and visualization of the solutions; image data.

a) Evaluation and visualization of the solutions.

After a minimizing solution (x̂, ŷ) of (P)lin or (P)hyp has been determined, we calculate

Irek(s) = I1(s) − DI1(s)T x̂(s) + 1
2 x̂(s)TD2I1(s) x̂(s) + 1

6 ŷ(s) · ‖ x̂(s) ‖3 (4.1)

as the according reconstruction of the reference image I0. In order to perform a quantitative evaluation of
the results, we will measure the relative reconstruction error

Q(x̂, ŷ) =


∫

Ω \ΩR

(
Irek(s)− I0(s)

)2

ds∫
Ω \ΩR

(
I1(s) − I0(s)

)2

ds


1/2

. (4.2)

The influence of the remainder 1
6 ŷ(s) · ‖ x̂(s) ‖3, which will be interpreted as a grey value correction, can be

quantified by means of the indicator

G(x̂, ŷ) = Max
s∈Ω \ΩR

∣∣ 1
6 ŷ(s) · ‖ x̂(s) ‖3

∣∣ . (4.3)

For the calculation of Q and G, a frame ΩR dyed in black of 4 pixels width has been excluded.
In the present paper, the results of an elastic image registration will be visualized by a deformed grid showing
the effect of the solution x̂ when applied to a reference configuration (see e. g. Fig. 13) as well as by a colorful
orientation plot. 38) Here the direction of the deformation vector is coded by the color of a pixel, while its
intensity increases with the magnitude of the vector. The correspondence between orientation and color can
be read from the colored border as a legend (see e. g. Fig. 12). The visualization has been realized using a
HSI color model 39) where every color is represented by the three coordinates hue, saturation and intensity.
Since we need only two coordinates for the visualization of the deformation field x̂, the saturation has been
left constant.
Besides x̂, we document the grey value correction

∣∣ 1
6 ŷ(s)·‖ x̂(s) ‖3

∣∣, where the correspondence of the greyscale
values has been inverted (white corresponds to zero) and magnified by the factor 3 (see e. g. Fig. 17). In
these figures, a frame of 4 pixels width has been dyed in grey.

b) Image data used in the experiments.

For our numerical experiments, four pairs of test images have been chosen, all originating from medical
imaging. The first pair (Figs. 1 and 2) shows the kidney region. 40) The images have been consecutively
generated via MR tomography with an interval of 2.4 seconds. The second pair (Figs. 3 and 5) is a cut-out
of the first showing a coronal section through the left kidney; moreover, in the left half of the images, a part
of the spine is visible. The original data have been presmoothed by (3× 3)-averaging.
In the third and fourth pair, adjacent sections through the upper part of the body (heart region) are shown;
the third pair (Figs. 6 and 8) has been generated via MR tomography and the fourth (Figs. 9 and 11) via

38) Cf. [ Brune/Maurer/Wagner 09 ] , p. 1197 f.
39) [ Plataniotis/Venetsanopoulos 00 ] , pp. 25 ff.
40) Images courtesy of Prof. R. Stollberger (TU Graz, Institute of Medical Engineering) and Dr. M. Aschauer

(Medical University of Graz, Division of Vascular and Interventional Radiology). From a contrast-modulated sequence

comprising 135 frames in total, the frames #50 and #51 (with nearly identical modality) have been selected.
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PE tomography. 41) Before processing, the original data have been calibrated with respect to intensity and
contrast and smoothed by (3× 3)-averaging.
Additionally, in order to illustrate the effect of the greyscale value correction in an extreme case, we consider
a synthetically generated fifth pair of binary images where the uppercase letters I and E should be matched
(Figs. 61 and 62).
The first image pair has the size of 512 × 512 pixels; the sizes of the pairs 2− 5 amount to 128 × 128 pixels
with a frame of 4 pixels width dyed in black, respectively.

Image pair 1: MR tomography of the kidney region.

Fig. 1: Template I1 Fig. 2: Reference image I0

Maximal grey value difference: Max s∈Ω | I1(s)− I0(s) | = 0.1529

41) Images courtesy of Dr. M. Dawood (University of Münster, European Institute of Molecular Imaging), cf. [ Dawood/

Büther/Lang/Schober/Schäfers 07 ] . From two unimodal sequences with mutually coinciding image planes,

the frames #29 and #30 have been selected, respectively.
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Image pair 2: MR tomography of the kidney region, cut-out.

Fig. 3: Template I1 Fig. 4: Grey value difference | I1 − I0 | Fig. 5: Reference image I0

Maximal grey value difference: Max s∈Ω | I1(s)− I0(s) | = 0.1529

Image pair 3: MR tomography of the upper part of the body.

Fig. 6: Template I1 Fig. 7: Grey value difference | I1 − I0 | Fig. 8: Reference image I0

Maximal grey value difference: Max s∈Ω | I1(s)− I0(s) | = 0.2862

Image pair 4: PE tomography of the upper part of the body.

Fig. 9: Template I1 Fig. 10: Grey value difference | I1 − I0 | Fig. 11: Reference image I0

Maximal grey value difference: Max s∈Ω | I1(s)− I0(s) | = 0.3019
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5. Numerical results.

a) Overview of the experiments.

In the following Subsection b), we document first the results with the best reconstruction quality Q for
the image pairs 1− 4. In Subsection c), with the help of the image pairs 2− 4, we study the influence of
the regularization parameters µ and R on the solutions while ηmax has been left constant. Conversely, in
Subsection d) the parameter ηmax will be varied while µ and R remain unchanged. Here we use the image
pairs 2, 4 and 5. Subsection e) contains experiments with inclusion of additional constraints. We present
experiments with landmarks as well as with undistorted or purely translated subregions, respectively. Finally,
a detailed discussion of the results will be provided in Subsection f).

b) Best results.

In the first table, the results with the best reconstruction quality Q will be listed.

Image pair 1 Image pair 2 Image pair 3 Image pair 4

(P)lin Q = 16.7729 a) Q = 12.1556 Q = 10.5367 Q = 12.0505
G = 0.2334 G = 0.1653 G = 0.4434 G = 0.1164

µ = 10−6, R = 12, µ = 10−5, R = 2, µ = 10−6, R = 12, µ = 10−6, R = 103 ,
ηmax = 0.001 ηmax = 1.0 ηmax = 0.001 ηmax = 0.001

(P)hyp Q = 12.3228 b) Q = 6.4187 Q = 8.0546 Q = 6.7443
G = 0.3944 G = 0.2212 G = 0.5634 G = 0.4245

µ = 10−6, R = 12, µ = 10−5, R = 2, µ = 10−6, R = 103, µ = 10−5, R = 2 ,
ηmax = 0.001 ηmax = 1.0 ηmax = 0.001 ηmax = 1.0

Table 5.1. Best results with arbitrary grey value correction. In (P)hyp, p = 2, c1 = 0.05, c2 = 0.25 have been chosen.

If only those results are accepted where the grey value correction G is bounded by the maximal grey value
difference Max s∈Ω | I1(s)− I0(s) |of the respective image pair, we arrive at the following table:

Image pair 1 Image pair 2 Image pair 3 Image pair 4

(P)lin Q = 20.5599 Q = 12.7953 Q = 15.5396 a) Q = 12.0505
G = 0.0470 G = 0.1356 G = 0.1437 G = 0.1164

µ = 10−6, R = 10, µ = 10−5, R = 2, µ = 10−6, R = 2, µ = 10−6, R = 103 ,
ηmax = 10−4 ηmax = 0.1 ηmax = 0.001 ηmax = 0.001

(P)hyp Q = 15.8672 Q = 15.6321 Q = 14.8844 b) Q = 9.1671 c)

G = 0.1137 G = 0.1340 G = 0.1580 G = 0.2265

µ = 10−6,R = 10, µ = 10−5, R = 4, µ = 10−6, R = 2, µ = 10−6, R = 104 ,
ηmax = 10−4 ηmax = 0.001 ηmax = 0.001 ηmax = 0.001

Table 5.2. Best results, grey value correction bounded. In (P)hyp, p = 2, c1 = 0.05, c2 = 0.25 have been chosen.

Remarks. Table 5.1.: a) See Figs. 12− 13. b) See Figs. 14− 15.
Table 5.2.: a) See Figs. 16− 18. b) See Figs. 19− 21. c) See Figs. 22− 24.
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Figs. 12− 13: Results for (P)lin and image pair 1 with µ = 10−6, R = 12, ηmax = 0.001

Figs. 14− 15: Results for (P)hyp and image pair 1 with µ = 10−6, R = 12, ηmax = 0.001, p = 2, c1 = 0.05, c2 = 0.25
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Figs. 16− 18: Results for (P)lin and image pair 3 with µ = 10−6, R = 2, ηmax = 0.001

Figs. 19− 21: Results for (P)hyp and image pair 3 with µ = 10−6, R = 2, ηmax = 0.001, p = 2, c1 = 0.05, c2 = 0.25

Figs. 22− 24: Results for (P)hyp and image pair 4 with µ = 10−6, R = 104, ηmax = 0.001, p = 2, c1 = 0.05, c2 = 0.25
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c) Influence of the parameters µ and R.

We provide three series of results with µ = 10−4, 10−5 and 10−6, respectively, and variation in R.

Image pair 2 Image pair 3 Image pair 4

R (P)lin (P)hyp (P)lin (P)hyp (P)lin (P)hyp

0.25 Q = 49.9918 Q = 48.9737 Q = 44.2981 Q = 43.4465 Q = 46.6049 Q = 45.4716
G = 0.0092 G = 0.0095 G = 0.0043 G = 0.0085 G = 0.0030 G = 0.0064

0.50 Q = 41.4113 Q = 37.5695 Q = 32.5295 Q = 29.7263 Q = 37.7872 Q = 34.3152
G = 0.0261 G = 0.0333 G = 0.0139 G = 0.0173 G = 0.0135 G = 0.0235

1.00 Q = 36.6221 Q = 28.1894 Q = 28.3317 Q = 21.8025 Q = 32.8227 Q = 25.7701
G = 0.0291 G = 0.0461 G = 0.0327 G = 0.0493 G = 0.0231 G = 0.0566

2.00 Q = 35.3471 Q = 23.2602 Q = 27.5077 Q = 18.2080 Q = 31.1195 Q = 21.0237
G = 0.0369 G = 0.0817 G = 0.0344 G = 0.0801 G = 0.0245 G = 0.0543

4.00 Q = 34.9750 Q = 20.5929 Q = 27.3403 Q = 15.8831 Q = 30.0015 Q = 17.0307
G = 0.0381 G = 0.0639 G = 0.0344 G = 0.0870 G = 0.0245 G = 0.0602

8.00 Q = 34.9440 a) Q = 19.1275 a) Q = 27.3403 Q = 15.4135 a) Q = 29.9762 Q = 16.6667 a)

G = 0.0381 G = 0.0748 G = 0.0344 G = 0.0822 G = 0.0245 G = 0.0599

12.00 Q = 35.0476 Q = 19.2262 Q = 27.3403 Q = 15.4799 Q = 29.9762 Q = 16.6836
G = 0.0381 G = 0.0749 G = 0.0344 G = 0.0863 G = 0.0245 G = 0.0591

102 Q = 35.0476 Q = 19.2275 Q = 27.3403 Q = 15.4993 Q = 29.9924 Q = 16.6973
G = 0.0381 G = 0.0749 G = 0.0344 G = 0.0822 G = 0.0245 G = 0.0591

103 Q = 35.0476 Q = 19.2556 Q = 27.3403 Q = 15.5560 Q = 29.9762 Q = 16.6907
G = 0.0381 G = 0.0749 G = 0.0344 G = 0.0867 G = 0.0245 G = 0.0591

104 Q = 35.0476 Q = 19.2534 Q = 27.3403 Q = 15.5560 Q = 29.9762 Q = 16.6935
G = 0.0381 G = 0.0749 G = 0.0344 G = 0.0867 G = 0.0245 G = 0.0591

Table 5.3. Variation in R for µ = 10−4, ηmax = 0.001. In (P)hyp, p = 2, c1 = 0.05, c2 = 0.25 have been chosen.

Image pair 2 Image pair 3 Image pair 4

R (P)lin (P)hyp (P)lin (P)hyp (P)lin (P)hyp

0.25 Q = 48.9990 Q = 48.9383 Q = 43.5012 Q = 43.3879 Q = 45.5130 Q = 45.4082
G = 0.0095 G = 0.0094 G = 0.0069 G = 0.0097 G = 0.0059 G = 0.0078

0.50 Q = 37.7058 Q = 37.3267 Q = 29.9156 Q = 29.4502 Q = 34.5038 Q = 34.1488
G = 0.0329 G = 0.0353 G = 0.0171 G = 0.0190 G = 0.0230 G = 0.0211

1.00 Q = 28.5688 b) Q = 27.0127 f) Q = 22.3028 Q = 20.8209 Q = 26.2620 Q = 24.7471
G = 0.0506 G = 0.0540 G = 0.0485 G = 0.0650 G = 0.0571 G = 0.0627

2.00 Q = 23.8161 c) Q = 20.0422 g) Q = 18.7026 Q = 15.3226 Q = 21.9221 Q = 18.6256
G = 0.0863 G = 0.1028 G = 0.0530 G = 0.1515 G = 0.0755 G = 0.0772

4.00 Q = 21.8626 d) Q = 15.6321 h) Q = 17.3287 Q = 11.8266 Q = 18.5002 Q = 12.7733
G = 0.0917 G = 0.1340 G = 0.0564 G = 0.3609 G = 0.0798 G = 0.0756

8.00 Q = 20.9644 Q = 12.9902 Q = 16.9014 Q = 10.3899 Q = 18.1728 a) Q = 11.4774
G = 0.0917 G = 0.1773 G = 0.0576 G = 0.5197 G = 0.0797 G = 0.0852

12.00 Q = 21.0102 e) Q = 12.9879 i) Q = 16.8948 a) Q = 10.1453 Q = 18.1807 Q = 11.3959
G = 0.0916 G = 0.1954 G = 0.0576 G = 0.5363 G = 0.0797 G = 0.0852

102 Q = 20.9396 a) Q = 12.9640 a) Q = 16.9005 Q = 10.1064 a) Q = 18.1938 Q = 11.4162
G = 0.0916 G = 0.1958 G = 0.0576 G = 0.5363 G = 0.0797 G = 0.0852

103 Q = 21.0353 Q = 13.1150 Q = 16.9273 Q = 10.1680 Q = 18.1912 Q = 11.3725
G = 0.0505 G = 0.1958 G = 0.0576 G = 0.5365 G = 0.0797 G = 0.0852

104 Q = 21.0353 Q = 13.1400 Q = 16.9273 Q = 10.1681 Q = 18.1912 Q = 11.3725
G = 0.0505 G = 0.1958 G = 0.0576 G = 0.5365 G = 0.0797 G = 0.0852

Table 5.4. Variation in R for µ = 10−5, ηmax = 0.001. In (P)hyp, p = 2, c1 = 0.05, c2 = 0.25 have been chosen.
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Image pair 2 Image pair 3 Image pair 4

R (P)lin (P)hyp (P)lin (P)hyp (P)lin (P)hyp

0.25 Q = 48.9387 Q = 48.9374 Q = 43.3888 Q = 43.3919 Q = 45.4101 Q = 45.4040
G = 0.0094 G = 0.0094 G = 0.0096 G = 0.0100 G = 0.0077 G = 0.0090

0.50 Q = 37.3353 Q = 37.3146 Q = 29.4695 Q = 29.4241 Q = 34.1623 Q = 34.1279
G = 0.0352 G = 0.0353 G = 0.0177 G = 0.0233 G = 0.0211 G = 0.0211

1.00 Q = 27.0690 Q = 26.9095 Q = 20.9041 Q = 20.6848 Q = 24.8189 Q = 24.6250
G = 0.0543 G = 0.0547 G = 0.0631 G = 0.0658 G = 0.0630 G = 0.0636

2.00 Q = 20.1532 Q = 19.5233 Q = 15.5396 b) Q = 14.8844 c) Q = 18.7941 Q = 18.1035
G = 0.1045 G = 0.1130 G = 0.1437 G = 0.1580 G = 0.0967 G = 0.0791

4.00 Q = 15.7368 Q = 14.1965 Q = 12.0729 Q = 10.5557 Q = 13.0631 Q = 11.3006
G = 0.1436 G = 0.2002 G = 0.3167 G = 0.3857 G = 0.1241 G = 0.0874

8.00 Q = 13.2110 Q = 10.4685 Q = 10.6423 Q = 8.4046 Q = 12.0767 Q = 9.3802
G = 0.1514 G = 0.2294 G = 0.4307 G = 0.5683 G = 0.1077 G = 0.2198

12.00 Q = 13.2374 Q = 10.3440 Q = 10.5367 a) Q = 8.1045 Q = 12.0692 Q = 9.2450
G = 0.1500 G = 0.2688 G = 0.4434 G = 0.5637 G = 0.1164 G = 0.2265

102 Q = 13.1570 a) Q = 10.2129 a) Q = 10.6591 Q = 8.0843 Q = 12.0568 Q = 9.1749
G = 0.1500 G = 0.2696 G = 0.4378 G = 0.5632 G = 0.1164 G = 0.2265

103 Q = 13.2947 Q = 10.6609 Q = 10.6495 Q = 8.0546 a) Q = 12.0505 Q = 9.1679
G = 0.1500 G = 0.2775 G = 0.4378 G = 0.5634 G = 0.1164 G = 0.2265

104 Q = 13.2946 Q = 10.4558 Q = 10.6452 Q = 8.0552 Q = 12.0505 Q = 9.1671 d)

G = 0.1500 G = 0.2909 G = 0.4378 G = 0.5634 G = 0.1164 G = 0.2265

Table 5.5. Variation in R for µ = 10−6, ηmax = 0.001. In (P)hyp, p = 2, c1 = 0.05, c2 = 0.25 have been chosen.

Remarks. Table 5.3.: a) Best result of the column has been obtained with R < 104.
Table 5.4.: a) Best result of the column has been obtained with R < 104. b) See Figs. 25− 27. c) See
Figs. 28− 30. d) See Figs. 31− 33. e) See Figs. 34− 36. f) See Figs. 37− 39. g) See Figs. 40− 42. h) See
Figs. 43− 45. i) See Figs. 46− 48.
Table 5.5.: a) Best result of the column has been obtained with R < 104. b) See Figs. 16− 18. c) See
Figs. 19− 21. d) See Figs. 22− 24.
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Figs. 25− 36: Results for (P)lin and image pair 2 with µ = 10−5, ηmax = 0.001; variation in R.

First row: R = 1, second row: R = 2, third row: R = 4, fourth row: R = 12.
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Figs. 37− 48: Results for (P)hyp and image pair 2 with µ = 10−5, ηmax = 0.001, p = 2, c1 = 0.05, c2 = 0.25; variation

in R. First row: R = 1, second row: R = 2, third row: R = 4, fourth row: R = 12.
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Figs. 49− 60: Results for (P)lin and image pair 4 with R = 2, µ = 10−5; variation in ηmax.

First row: ηmax = 0, second row: ηmax = 10−3, third row: ηmax = 10−2, fourth row: ηmax = 10−1.
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d) Influence of the parameter ηmax.

Image pair 2 Image pair 4 Image pair 5

ηmax (P)lin (P)hyp (P)lin (P)hyp (P)lin (P)hyp

0 Q = 28.0140 Q = 24.6007 Q = 23.8688 a) Q = 20.7963 Q = 94.4095 Q = 94.4095
G = 0 G = 0 G = 0 G = 0 G = 0 G = 0

10−6 Q = 28.0096 Q = 24.6160 Q = 23.8789 Q = 20.7878 Q = 89.1241 Q = 89.1233
G = 0.0001 G = 0.0001 G = 0.0000 G = 0.0000 G = 0.2526 G = 0.2526

10−5 Q = 27.9602 Q = 24.5253 Q = 23.8463 Q = 20.7400 Q = 63.5336 Q = 63.5330
G = 0.0012 G = 0.0017 G = 0.0004 G = 0.0006 G = 1.0000 G = 1.0000

10−4 Q = 27.5452 Q = 24.0231 Q = 23.6845 Q = 20.5129 Q = 39.3174 Q = 39.3172
G = 0.0110 G = 0.0160 G = 0.0048 G = 0.0099 G = 1.0000 G = 1.0000

10−3 Q = 23.8161 Q = 20.0422 Q = 21.9221 b) Q = 18.6256 Q = 29.8742 Q = 29.8741
G = 0.0863 G = 0.1028 G = 0.0755 G = 0.0772 G = 1.1041 G = 1.1052

10−2 Q = 15.4305 Q = 10.9299 Q = 16.3550 c) Q = 12.4281 Q = 24.2592 Q = 24.2075
G = 0.1589 G = 0.2253 G = 0.1864 G = 0.2516 G = 1.1948 G = 1.1099

10−1 Q = 12.7953 Q = 7.5963 Q = 12.9707 d) Q = 7.8480 Q = 22.5748 Q = 22.5837
G = 0.1356 G = 0.2095 G = 0.3326 G = 0.4218 G = 1.6189 G = 1.6199

1 Q = 12.1556 Q = 6.4187 Q = 12.1770 Q = 6.7443 Q = 22.2051 Q = 22.2050 e)

G = 0.1653 G = 0.2212 G = 0.2783 G = 0.4245 G = 1.8859 G = 1.8923

Table 5.6. Variation in ηmax for R = 2, µ = 10−5. In (P)hyp, p = 2, c1 = 0.05, c2 = 0.25 have been chosen.

Remark. a) See Figs. 49− 51. b) See Figs. 52− 54. c) See Figs. 55− 57. d) See Figs. 58− 60. e) See
Figs. 63− 66.

Figs. 61− 66: Results for (P)hyp and image pair 5 with µ = 10−6, R = 2, ηmax = 1, p = 2, c1 = 0.05, c2 = 0.25.

From above and left: Template I1, reference image I0, x̂ as colorplot, grey value difference, reconstruction Irek of the

reference image and grid deformed by x̂.



22

e) Experiments with additional constraints.

We present three experiments where within the optimal control problems (P)lin and (P)hyp, additional
constraints according to Subsection 2.c) have been included. In the first experiment, we generated edge
sketches for the image pair 3 (Figs. 67 and 68). 42) With the help of these sketches, the following landmarks
have been brought in correspondence:

k 1 2 3 4 5 6 7 8 9

sk (in I1) (37,75) (49,77) (55,74) (63,73) (71,64) (55,88) (62,82) (70,90) (62,95)

s̃k (in I0) (38,76) (49,78) (55,75) (63,74) (70,64) (52,87) (61,80) (72,92) (63,98)

x(sk)
(−1
−1

) (
0
−1

) (
0
−1

) (
0
−1

) (
1
0

) (
3
1

) (
1
2

) (−2
−2

) (−1
−3

)
Table 5.7. Landmarks for the constraints (2.8) in image pair 3

Accordingly, nine constraints of the shape (2.8) have been added to (P)lin and (P)hyp. The second experiment
has been performed with image pair 3 as well. Here we add a constraint (2.9) on the rectangular subregion
Θ = [ 105 , 122 ] × [ 5 , 124 ] (Fig. 69). This subregion contains the contours of the rack, whose position
does not change in the images. In a third experiment with the constraint (2.10), we use the image pair
2. After a visual comparison of the images it has been presumed that the subregion Θ = Θ1 ∪ Θ2 with
Θ1 = [ 47 , 52 ] × [ 100 , 110 ] , Θ2 = [ 55 , 63 ] × [ 63 , 77 ] (Fig. 70) is subjected to a pure translation.

Figs. 67− 68: Edge sketches for I1 (left) and I0 (right) with landmarks (yellow)

Fig. 69: Image pair 3: immotile subregion Θ Fig. 70: Image pair 2: Subregion Θ = Θ1 ∪ Θ2

(yellow border) with pure translation (yellow border)

42) By use of the optimal control method described in [ Franek/Franek/Maurer/Wagner 10 ] , p. 13.
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The results have been assembled in the following table::

Image pair 3 Image pair 3 Image pair 3 Image pair 2 Image pair 2
no constr. (2.8) (2.9) no constr. (2.10)

(P)lin Q = 16.9014 a) Q = 17.5100 b) Q = 17.6469 c) Q = 15.4305 d) Q = 15.3176 e)

G = 0.0576 G = 0.0575 G = 0.0529 G = 0.1589 G = 0.1597

µ = 10−5, µ = 10−5, µ = 10−5, µ = 10−5, µ = 10−5 ,
R = 8, R = 8, R = 8, R = 2, R = 2,
ηmax = 0.001 ηmax = 0.001 ηmax = 0.001 ηmax = 0.01 ηmax = 0.01

ε = 10−6 ε = 10−3

(P)hyp Q = 10.3899 Q = 11.1837 Q = 11.5735 Q = 10.9299 Q = 10.3687
G = 0.5197 G = 0.5362 G = 0.5361 G = 0.2253 G = 0.2321

µ = 10−5, µ = 10−5, µ = 10−5, µ = 10−5, µ = 10−5 ,
R = 8, R = 8, R = 8, R = 2, R = 2,
ηmax = 0.001 ηmax = 0.01 ηmax = 0.001 ηmax = 0.01 ηmax = 0.001

ε = 10−6 ε = 10−3

Table 5.8. Experiments including additional constraints. In (P)hyp, p = 2, c1 = 0.05, c2 = 0.25 have been chosen.

Remarks. a) See Figs. 77− 79. b) See Figs. 80− 82. c) See Figs. 83− 85. d) See Figs. 71− 73. e) See
Figs. 74− 76.

Figs. 71− 73: Results for (P)lin and image pair 2, experiment without additional constraints for comparison:

µ = 10−5, R = 2, ηmax = 0.01

Figs. 74− 76: Results for (P)lin and image pair 2, experiment with pure translation of the subregion Θ1 ∪ Θ2:

µ = 10−5, R = 2, ηmax = 0.01, ε = 0.001
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Figs. 77− 79: Results for (P)lin and image pair 3, experiment without additional constraints for comparison:

µ = 10−5, R = 8, ηmax = 0.001

Figs. 80− 82: Results for (P)lin and image pair 3, experiment with landmarks:

µ = 10−5, R = 8, ηmax = 0.001

Figs. 83− 85: Results for (P)lin and image pair 3, experiment with immotile subregion:

µ = 10−5, R = 8, ηmax = 0.001, ε = 10−6

f) Discussion of the results.

In Subsections 5.b) and 5.c), the relative error has been reduced even for moderate values of the regularization
parameter µ by 70%; with an appropriate choice of µ, ηmax and R, registrations with relative errors of 10%
and below can be obtained (the best value amounts to Q = 6.7%).
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Even when ruling out experiments where the grey value correction G exceeds the maximal grey value dif-
ference of the original images, the relative error can be reduced by 85− 90% (Tables 5.1. and 5.2.). It is
remarkable that in all experiments, for identical values of µ, R and ηmax, the hyperelastic regularization
produces significantly better values of Q. On the contrary, as one may expect, the convex problem (P)lin is
superior to the polyconvex problem (P)hyp with respect to the runtime behaviour. The mutual comparison
between the data sets originating from different imaging methods shows that the variation of the parameters
µ, R and ηmax within the problems (P)lin and (P)hyp influences the results in a comparable way (Tables
5.3.− 5.5.).
The results of Subsection 5.c) demonstrate that indeed, in comparison with the (unconstrained) variational
problems, the presence of a control restriction may slightly improve the registration quality (note that, for
sufficiently large R, the global minimizers of the control problems (P)lin and (P)hyp are the same as for the
variational problems (V)lin and (V)hyp). The parameter R within the control restriction behaves like an
additional regularization parameter.
The necessity of the introduction of the remainder term 1

6 y(s)·‖x(s) ‖3 into the approximation of the fidelity
term is strongly supported by the results of Subsection 5.d). When deactivating this member by ηmax = 0,
one observes typically a loss of 3− 5% registration quality in comparison with | y | 6 ηmax = 10−3, and even
a loss of more than 10% in comparison with | y | 6 ηmax = 10−2. Further, one may convince oneself that, for
the data from medical imaging, the character of x as a linear-elastic or hyperelastic deformation has been
conserved if the bound ηmax ranges within 0.001 − 0.01 (Table 5.6., columns 1− 4). On the other hand,
the experiments with the image pair 5 illustrate a situation where a registration by an elastic deformation
cannot be realized from the outset. Nevertheless, we arrive at results with a registration quality of about
25% for values of ηmax > 0.01. In this situation, however, the brunt of the reconstruction is borne by the
correction term (G > 1) while the deformation x̂ makes only an inferior contribution.
The incorporation of additional constraints in Subsection 5.e) becomes important if, on the base of x̂,
conclusions about the actual motion of the pictured objects will be drawn. Then the motions known in
advance should be replicated within x̂. Our experiments show that the addition of state constraints and
restrictions of the shape (2.8)− (2.10) to the control problems causes no significant change of the registration
quality (Table 5.8.). Due to the according reduction of the number of variables, the “freezing” of immotile
subregions (constraint (2.9) with ε = 0) may be of numerical importance.

g) Conclusion and outlook.

In the present work, we demonstrated that the elastic/hyperelastic image registration problem can be suc-
cessfully reformulated and solved as a multidimensional control problem. Within this framework, even an
improvement of the registration quality could be observed in comparison with the respective variational
problems. In our experiments, the relative error between template and reference image could be reduced in
the course of the registration by up to 90%. In accordance with the requirements of the registration and the
information a priori available, additional state and control restrictions can be introduced into the problems.
Surely the present approach may be further developed and improved according to different viewpoints. This
remark concerns the general modelling (e. g. different approximations for the fidelity term, a symmetri-
cal modelling with respect to the roles of I1 and I0, or an additional regularization with respect to y),
the discretization strategy (generation of an adaptive triangulation instead of an uniform one) as well as
the implementation (optimization of the runtime behaviour, registration of three- or four-dimensional data
stacks).
Finally, the results of the present paper open the prospect of an optimal control access to the multimodal
image registration problem. The generalization of the numerical approach presented here and its combina-
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tion with the achievements from [ Franek/Franek/Maurer/Wagner 10 ] will be reserved for a future
publication.
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