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1. Introduction.

a) Multidimensional control problems of Dieudonné-Rashevsky type.

In the present paper, we investigate optimal control problems involving first-order PDE’s together with
boundary conditions, phase and control restrictions. Following Cesari, problems of this type are called
Dieudonné-Rashevsky type problems. 01) In the simplest case, a Dieudonné-Rashevsky type problem will be
obtained when adding to the basic problem of multidimensional calculus of variations,

(V)0 F (x) =
∫

Ω

f(t, x(t), Jx(t)) dt −→ inf ! ; x ∈W 1,p
0 (Ω,Rn) , Ω ⊂ Rm , (1.1)

restrictions for the partial derivatives of x. Imposing, for example, in (V)0 the additional condition

Jx(t) =


∂x1

∂t1
(t) ...

∂x1

∂tm
(t)

... ...
∂xn

∂t1
(t) ...

∂xn

∂tm
(t)

 ∈ K ⊂ Rnm (∀) t ∈ Ω , (1.2)

for the Jacobian of x, we get the optimal control problem

(P)0 F (x, u) =
∫

Ω

f(t, x(t), u(t)) dt −→ inf ! ; (x, u) ∈W 1,p
0 (Ω,Rn) × L

p(Ω,Rnm) ; (1.3)

Jx(t) = u(t) (∀) t ∈ Ω ; (1.4)

u ∈ U =
{
u ∈ Lp(Ω,Rnm)

∣∣ u(t) ∈ K (∀) t ∈ Ω
}
. (1.5)

Until now, torsion problems for prismatic bars with elastic or elastic-plastic material laws were considered
as the classical field of application for Dieudonné-Rashevsky type problems. 02) In these problems, the state
variable is a stress function T while the shear stresses τzx and τzy within the cross-sectional plane of the bar
(which are proportional to the partial derivatives of T ) act as controls. 03) Then for materials like steel, a
control restriction results from the fact that the modulus of the resulting shear stress is not allowed to exceed
the so-called yield point. 04) Further instances are optimization problems for convex bodies, e. g. maximization
of the surface for given width and diameter, while the bodies are described through support functions in

01) [Cesari 69 ] , p. 339: “problem ... with differential equations ... written in the Dieudonné-Rashevsky form”.
02) In the case of elastic material law, St.-Venant’s torsion has already been described through a variational problem

in [Funk 62 ] , pp. 531 ff., and through an optimal control problem in [Lur’e 75 ] , pp. 240 ff. and [Wagner 96 ] ,

pp. 76 ff. Using the energy functional [Sauer 80 ] , p. 20, (4.-60), it is possible to identify in this framework the

warping torsion as well. Torsion problems with elastic-plastic material law have been investigated by Ting (see, for

instance, [Ting 69a ] , p. 531 f., and [Ting 69b ] ).
03) [Sauer 80 ] , pp. 8 – 20.
04) [Chmelka/Melan 76 ] , pp. 38 – 45.
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spherical coordinates. These lead again to convex Dieudonné-Rashevsky type problems with linear state
equations. 05)

Starting from a completely different viewpoint, Dacorogna and Marcellini arrived at Dieudonné-Ra-
shevsky type problems in their papers on underdetermined boundary-value problems for nonlinear first-
order PDE’s at the end of the 90s. 06) Assuming e. g. that a function f(t, ξ, v) : Ω ×R×Rm → R satisfies
the compatibility condition f(t, o, o) 6 0 (∀) t ∈ Ω ⊂ Rm together with certain coercivity and convexity
conditions, the Dirichlet boundary-value problem

f(t, x(t),∇x(t)) = 0 (∀) t ∈ Ω , x ∈W 1,∞
0 (Ω,R) (1.6)

is equivalent to the control problem

(P)1 F (x, u) =
∫

Ω

(
f(t, x(t), u(t))

)2
dt −→ inf ! ; (x, u) ∈W 1,∞

0 (Ω,R) × L
∞(Ω,Rm) ; (1.7)

∇x(t) = u(t) (∀) t ∈ Ω ; (1.8)

u ∈ U =
{
u ∈ L∞(Ω,Rm)

∣∣ u(t) ∈ K (∀) t ∈ Ω
}

(1.9)

where the set K ⊂ Rm, to be constructed on the base of f , is a convex body. Moreover, the set of global
minimizers is uncountable and dense in the set {x ∈ W

1,∞
0 (Ω,R)

∣∣ f(t, x(t),∇x(t)) 6 0 (∀) t ∈ Ω } with
respect to the L∞-norm topology. 07) Even if the assumptions formulated by Dacorogna/Marcellini are
not (or not completely) satisfied, it seems plausible to treat ill-posed boundary-value problems of the shape
(1.6) or, more generally,

f(t, x(t), Jx(t)) = 0 (∀) t ∈ Ω , x ∈W 1,∞
0 (Ω,Rn) , n > 1 (1.10)

as multidimensional control problems. Besides the defect minimization term, within the objective one could
consider a regularization term as well while the control restriction acts as a parameter.
Although Dieudonné-Rashevsky type problems are less intensely investigated than control problems with
second-order PDE’s, 08) existence and relaxation theorems as well as first-order necessary optimality condi-
tions in the form of the so-called ε-maximum principle 09) and duality theorems 10) have been available
since the 90s for convex problems with linear state equations (G(t, x(t), Jx(t), u(t)) = Jx(t) − u(t) = 0
resp. G( ... ) = Jx(t)−A(t)x(t) −B(t)u(t) = 0). The corresponding theory was developed substantially by
Klötzler, Pickenhain and the author.

b) Aims and outline of the paper.

In the present paper, we pursue two purposes. Thereby we restrict ourselves to the investigation of convex
problems, while the quasiconvex case will be treated in subsequent publications. Our first goal is to eliminate

05) [Andrejewa/Klötzler 84a ] and [Andrejewa/Klötzler 84b ] , p. 149 f.
06) [Dacorogna/Marcellini 97 ] , [Dacorogna/Marcellini 98 ] and [Dacorogna/Marcellini 99 ] .
07) This follows from [Dacorogna/Marcellini 99 ] , p. 35, Theorem 2.3., and the analysis of the related proof; ibid.,

pp. 43 – 47.
08) We refer e. g. to [Lions 71 ] and [Tröltzsch 05a ] .
09) For a survey of the papers concerning necessary conditions, we refer to Section 2.a) below.
10) Analogous to the field theory in the calculus of variations, duality theorems and saddle-point conditions have been

proved. Among the papers concerning duality, we mention [Klötzler 95 ] , [Klötzler 98 ] , [Pickenhain 91 ] ,

pp. 26 – 94, [Pickenhain 92b ] , [Pickenhain 02 ] , [Pickenhain/Tammer 91 ] , [Pickenhain/Wagner 01 ] and

[Wagner 00 ] as well as the seminal paper [Klötzler 79 ] .
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the hitherto existing dependence on the artificial parameter ε within the first-order necessary conditions
(which are cited below as Theorem 2.1.). To this end, we provide a new proof for Pontryagin’s principle
which results in a substantial improvement of the first-order necessary optimality conditions (Theorems 2.2.,
2.3. and 3.3.).
Our second purpose is to introduce Dieudonné-Rashevsky type problems into mathematical image processing.
We consider two problems. The first one is the conversion of time-dependent given image data into the
so-called optical flow, the second one is the reconstruction of a piece of the earth’s surface from aerial
photographs (Shape from Shading). A common way to treat these problems is their reformulation as problems
of multidimensional calculus of variations. Both problems have in common that the objectives consist
of two terms where the first one minimizes the defect in the underlying equation while the second one
is a regularization term. In the case of the optical flow problem, the correspondence between different
regularization terms and the interpretation of the Euler-Lagrange equations as diffusion equations is well
understood. 11) In the literature, the advantages and disadvantages of the numerous regularization terms
have been widely discussed. In particular, regularization terms with convex and nonquadratic integrands
have been well investigated. 12) We argue that in both problems, the addition of control restrictions to the
variational problems is reasonable. 13) 14) In the case of Shape from Shading this is even mandatory since,
actually, the situation described by Dacorogna/Marcellini’s theory occurs (Theorem 5.1.). Depending
on the formulation, we arrive at Dieudonné-Rashevsky type problems which have to be relaxed either convex
or quasiconvex. In the convex case, the newly formulated necessary conditions are now available.
The paper is organized as follows. This section will close with a collection of notations (Section 1.c) ). In Sec-
tion 2, we start with a survey on the known necessary optimality conditions for convex Dieudonné-Rashevsky
type problems (Section 2.a) ). Subsequently, we rephrase and prove Pontryagin’s maximum principle in its
parameter-free version (Section 2.b) ). Section 3 is devoted to the Helmholtz-Weyl decomposition of the
multipliers into “gradient” and “curl” components. Then we present the application problems from image
processing. Section 4 is addressed to the optical flow problem, Section 5 to the Shape from Shading problem.
In both cases, we give a survey of the previous treatment of the problems within the framework of calculus
of variations and discuss their reformulation as multidimensional control problems. In the convex case, we
state the necessary optimality conditions (Theorems 4.1., 4.2. and 5.3.).

c) Notation.

Let k ∈ { 0, 1, , ... , ∞} and 1 6 p 6 ∞. Then Ck(Ω,Rr), Lp(Ω,Rr) andW k,p(Ω,Rr) denote the spaces of r-
dimensional vector functions whose components are k-times continuously differentiable, resp. belong to Lp(Ω)
or to the Sobolev space of Lp(Ω)-functions with weak derivatives up to kth order in L

p(Ω). In addition,
functions within the subspaces Ck

0(Ω,Rr) ⊂ C
k(Ω,Rr) resp. W k,p

0 (Ω,Rr) ⊂ W
k,p
p (Ω,Rr) are compactly

supported. The subspaces Gp(Ω,Rnm), Rp(Ω,Rnm) ⊂ L
p(Ω,Rnm) of “gradient” and “curl” fields will be

defined in Section 3.a) below. The symbols xtj
and ∂x/∂tj may denote the classical as well as the weak

partial derivative of x by tj . Likewise, ∇x and Jx denote the (classical or weak) gradient resp. Jacobian

11) Cf. [Weickert/Brox 02 ] and [Weickert/Schnörr 01 ] .
12) Recently nonconvex integrands are included in these considerations as well, see [Aubert/Kornprobst 02 ], pp. 80

ff. and pp. 187 ff., [Chipot/March/Vitulano 01 ] . In the case of the Shape from Shading problem, this leads to a

convex relaxation, and in the case of the optical flow problem to a quasiconvex relaxation of the variational problems.
13) First numerical experiments for the optical flow problem with control restrictions look very promising but are not

included here. See a forthcoming paper together with C. Brune.
14) The problem of image restoration resp. image smoothing allows a reformulation as Dieudonné-Rashevsky type problem

as well, see [Wagner 2006 ] , pp. 108 – 112.
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of x. 1A : Rr → R with 1A(t) = 1 ⇐⇒ t ∈ A and 1A(t) = 0 ⇐⇒ t /∈ A denotes the characteristic
function of the set A ⊆ Rr. int (A), cl (A), ∂A, cl cone (A) and |A | denote the interior, closure, boundary,
the closed positive hull and the r-dimensional Lebesgue measure of the set A ⊆ Rr, respectively. Finally,
we explain three nonstandard notations: {xN } , A denotes a sequence {xN } with members xN ∈ A. If
A ⊆ Rr then the abbreviation “ (∀) t ∈ A” has to be read as “for almost all t ∈ A” resp. “for all t ∈ A except
some r-dimensional Lebesgue null set”. The symbol o denotes, dependent on the context, the zero element
resp. the zero function of the underlying space.

2. Pontryagin’s maximum principle for Dieudonné-Rashevsky type problems.

a) The ε-maximum principle.

We consider multidimensional control problems of the shape

(P)0 F (x, u) =
∫

Ω

f(t, x(t), u(t)) dt −→ inf ! ; (x, u) ∈
(
C

0(Ω,Rn) ∩ W
1,p
0 (Ω,Rn)

)
× L

p(Ω,Rnm) ;

(2.1)

G(x, u) =
( ∂xi

∂tj
( · )− uij( · )

)
i = 1, ... , n
j = 1, ... , m

= oLp(Ω,Rnm) ; (2.2)

u ∈ U =
{
u ∈ Lp(Ω,Rnm)

∣∣ u(t) ∈ K (∀) t ∈ Ω
}
, (2.3)

and throughout the section make the following assumptions about the data of (P)0: Let n > 1, m > 2
and 1 < p < ∞. Ω ⊂ Rm is the closure of a bounded Lipschitz domain. 15) The function f(t, ξ, v) : Ω ×
Rn×Rnm → R is measurable and essentially bounded with respect to t and continuously differentiable with
respect to all ξi and vij . K ⊂ Rnm is a convex body with o ∈ int (K). These assumptions guarantee the
existence of a feasible solution (the zero solution). For any feasible solution (x, u) of (P)0 it follows that
x ∈W 1,∞

0 (Ω,Rn) ∩ W
1,p
0 (Ω,Rn) since Jx(t) ∈ K (∀) t ∈ Ω. x thus admits a Lipschitz representative in the

case 1 < p 6 m as well. 16)

The general theorems of Ioffe/Tichomirow and Ginsburg/Ioffe 17) (“Lagrange’s principle”) cannot be
applied to this problem since its assumptions about the operator G(x, u) : W 1,p

0 (Ω,Rn)× U → L
p(Ω,Rnm)

fail: the range{
Gx(x∗, u∗) (x, u)

∣∣ x ∈W 1,p
0 (Ω,Rn)

}
=
{
z ∈ Lp(Ω,Rnm)

∣∣ ∃x ∈W 1,p
0 (Ω,Rn) with z = Jx

}
(2.4)

has infinite codimension in Lp(Ω,Rnm) (cf. Section 3.a) below). Consequently, the subspace of Lp(Ω,Rnm)
generated by the feasible controls u violating the integrability conditions 18)∫

Ω

(
uij(t)

∂ψ

∂tk
(t)− uik(t)

∂ψ

∂tj
(t)
)
dt = 0 ∀ψ ∈ C∞

0 (Ω,R) , 1 6 i 6 n , 1 6 j, k 6 m (2.5)

is infinite-dimensional. For this reason, the proof of the Pontryagin maximum principle for control prob-
lems with single integrals cannot be carried over to (P)0. First-order necessary conditions for Dieudonné-

15) [Evans/Gariepy 92 ] , p. 127.
16) Ibid., p. 131, Theorem 5.
17) [ Ioffe/Tichomirow 79 ] , p. 73 ff., Theorem 3, resp. [Ginsburg/Ioffe 96 ] , p. 92, Theorem 3.3., and p. 96,

Theorem 3.6.
18) Cf. [Wagner 99 ] , p. 169 f., Theorem 1.4.
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Rashevsky type problems were proven at first by Cesari, Rund and Klötzler, under assumptions, how-
ever, which nearly exclude these conditions from practical application. 19) Since the 90s, Klötzler, Picken-

hain and Wagner have pursued a different approach leading to the so-called ε-maximum principle. In this
set of first-order necessary optimality conditions, the multipliers as well as the conditions themselves depend
on an additional parameter ε > 0. 20) This theorem, assuming explicitly the convexity of the integrand with
respect to v, reads as follows:

Theorem 2.1. (ε-maximum principle for (P)0 in the smooth-convex case) 21) Consider the problem
(P)0 under the above mentioned assumptions about the data. In addition, assume that f(t, ξ, v) is continuous
in t and convex with respect to v for all fixed (t, ξ) ∈ Ω×Rn. If (x∗, u∗) is a global minimizer of (P)0 then
for any parameter ε > 0 there exist multipliers λε > 0 and yε ∈ L

q(Ω,Rnm), p−1 + q−1 = 1, satisfying the
following conditions (M)ε and (K)ε:

(M)ε : ε + λε

∫
Ω

(
f(t, x∗(t), u(t))− f(t, x∗(t), u∗(t))

)
dt −

∑
i,j

∫
Ω

(
uij(t)− u∗ij(t)

)
yε

ij(t) dt > 0

∀u ∈ U ;

(K)ε : λε ∑
i

∫
Ω

∂f

∂ξi
(t, x∗(t), u∗(t)) ·

(
xi(t)− x∗i (t)

)
dt +

∑
i,j

∫
Ω

( ∂xi

∂tj
(t)− ∂x∗i

∂tj
(t)
)
yε

ij(t) dt = 0

∀x ∈W 1,p
0 (Ω,Rn) .

The limit passage ε→ 0 within these conditions could be justified only in the special case when the optimal
control u∗ is piecewise continuous. 22) The parameter ε can also be neglected if the integrability conditions
(2.5) are explicitly included in the description of the control domain U. 23) In this case, however, an almost
everywhere pointwise reformulation of the maximum condition is impossible. Independently of the previ-
ously mentioned authors, some special problems of type (P)0 were treated by Cellina/Perrotta and
Ishii/Loreti in the context of viscosity solutions of Hamilton-Jacobi equations. 24)

In the next section, we will reformulate and prove Pontryagin’s maximum principle for the convex problem
(P)0 independently of a parameter ε > 0.

19) [Cesari 69 ] , p. 348, Theorem, [Rund 74 ] , p. 128, Theorem 2.1., resp. [Klötzler 76 ] , p. 71, Theorem 2. Cesari’s

proof requires some integrability conditions for needle variations of the type 1( Ω \E )(t) · u∗(t) + 1E(t) · v0 within a

sufficiently small neighborhood of u∗ ( [Cesari 69 ] , p. 347, (β) ) while Klötzler has to assume a higher regularity

of a solution S of the related Hamilton-Jacobi differential inequality

m∑
j=1

∂Sj

∂tj
(t, ξ) + Max

v∈V

H
(
t, ξ, v,∇ξ S(t, ξ), λ0

)
6 0 , (2.6)

namely S(t, ξ) ∈ C2(Ω × R
n, Rm ) in a whole neighborhood of a graph (t, ξ) = (t, x∗(t)) where equality holds

( [Klötzler 76 ] , p. 70 f.). Rund has to assume the existence of dual variables of class C2 as well ( [Rund 74 ] ,

p. 127 f.).
20) [Klötzler 92 ] , [Klötzler/Pickenhain 93 ] , [Klötzler/Pickenhain 94 ] , [Pickenhain 91 ] , [Pickenhain

92a ] , p. 431, Theorem 2, [Pickenhain 96 ] , [Pickenhain/Wagner 00a ] , [Pickenhain/Wagner 00b ] , [Picken-

hain/Wagner 01 ] , [Pickenhain/Wagner 05 ] , [Pickenhain/Wagner 06 ] , [Wagner 96 ] and [Wagner 99 ] ,

p. 171, Theorem 2.3.
21) [Pickenhain/Wagner 05 ] , p. 151, Theorem 2.1., with f1 ≡ o and ψ = x− x∗.
22) Ibid., p. 146 f., Theorem 1.1.
23) [Pickenhain 92a ] , p. 426, Theorem 1, and [Wagner 99 ] , p. 178, Theorem 3.3.
24) [Cellina/Perrotta 98 ] , [ Ishii/Loreti 03a ] and [ Ishii/Loreti 03b ] .
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b) The maximum principle without the artificial parameter ε.

A thorough revision of the proof of Theorem 2.1. reveals that the introduction of the parameter ε > 0 can
be ruled out under otherwise identical assumptions.

Theorem 2.2. (Pontryagin’s maximum principle for (P)0 in the smooth-convex case) Consider
the problem (P)0 under the assumptions about the data mentioned in Section 2.a) (in particular, f is only
measurable and essentially bounded with respect to t). In addition, assume that f(t, ξ, v) is convex with
respect to v for all fixed (t, ξ) ∈ Ω×Rn. If (x∗, u∗) is a global minimizer of (P)0 then there exist multipliers
λ0 > 0 and y ∈ Lq(Ω,Rnm), p−1 + q−1 = 1, satisfying the following conditions (M) and (K):

(M) : λ0

∫
Ω

(
f(t, x∗(t), u(t))− f(t, x∗(t), u∗(t))

)
dt −

∑
i,j

∫
Ω

(
uij(t)− u∗ij(t)

)
yij(t) dt > 0

∀u ∈ U ;

(K) : λ0

∑
i

∫
Ω

∂f

∂ξi
(t, x∗(t), u∗(t)) ·

(
xi(t)− x∗i (t)

)
dt +

∑
i,j

∫
Ω

( ∂xi

∂tj
(t)− ∂x∗i

∂tj
(t)
)
yij(t) dt = 0

∀x ∈W 1,p
0 (Ω,Rn) .

Remark. With the same proof arguments, the mistake in the proof of [Pickenhain/Wagner 00a ] , p. 231
ff., Theorem 3.4., (47) – (53), can be corrected without additional assumptions on the structure of u∗.

We formulate the maximum condition from Theorem 2.2. as an almost everywhere pointwise condition as
well:

Theorem 2.3. (Pointwise maximum condition for (P)0 in the smooth-convex case) Under the
assumptions of Theorem 2.2., the maximum condition in integrated form (M) implies a maximum condition
(MP) which holds pointwise almost everywhere:

(MP) : λ0

(
f(t, x∗(t), v)− f(t, x∗(t), u∗(t))

)
−
∑
i,j

(
vij − u∗ij(t)

)
yij(t) > 0 ∀ v ∈ K (∀) t ∈ Ω .

Let us turn now to the proofs of Theorems 2.2. and 2.3.

c) Proofs.

Proof of Theorem 2.2. • Step 1: The variational lemma for (P)0. It reads as follows:

Lemma 2.4. (Variational lemma for the smooth-convex problem (P)0) Consider the problem (P)0
under the assumptions of Theorem 2.2. If (x∗, u∗) is a global minimizer of (P)0 then it holds for any pair
(x, u) ∈W 1,p

0 (Ω,Rn)× L
p(Ω,Rnm) satisfying (2.1) – (2.3), i.e. for any admissible pair in (P)0:

n∑
i=1

∫
Ω

∂f

∂ξi
(t, x∗(t), u∗(t)) ·

(
xi(t)− x∗i (t)

)
dt +

n∑
i=1

m∑
j=1

∫
Ω

∂f

∂vij
(t, x∗(t), u∗(t)) ·

(
uij(t)− u∗ij(t)

)
dt > 0 .

(2.7)

Proof. In consequence of our assumptions about (P)0, we have for all i, j:

∂f

∂ξi
( · , x∗( · ), u∗( · )) , ∂f

∂vij
( · , x∗( · ), u∗( · )) ∈ L

q(Ω,R) ∩ L
∞(Ω,R) , p−1 + q−1 = 1 . (2.8)

Thus both the integrals

〈Fx(x∗, u∗) , x− x∗ 〉Lq −Lp =
n∑

i=1

∫
Ω

∂f

∂ξi
(t, x∗(t), u∗(t)) ·

(
xi(t)− x∗i (t)

)
dt and (2.9)
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〈Fu(x∗, u∗) , u− u∗ 〉Lq −Lp =
n∑

i=1

m∑
j=1

∫
Ω

∂f

∂vij
(t, x∗(t), u∗(t)) ·

(
uij(t)− u∗ij(t)

)
dt (2.10)

are well-defined for any admissible pair (x, u) ∈W 1,p
0 (Ω,Rn)×Lp(Ω,Rnm), and the statement of the Lemma

is equivalent to

δ+F (x∗, u∗) (x− x∗, u− u∗) = 〈Fx(x∗, u∗) , x− x∗ 〉Lq −Lp + 〈Fu(x∗, u∗) , u− u∗ 〉Lq −Lp > 0 (2.11)

for any admissible (x, u).

• Step 2: The variational sets C and D and its properties. Similarly to [ Ioffe/Tichomirow 79 ] , p. 203,
we define two sets C, D ⊂ R×Lp(Ω,Rnm) by 25)

C =

{(
τ0 + 〈Fx(x∗, u∗) , x− x∗ 〉Lq −Lp

G(x, u∗)−G(x∗, u∗)

) ∣∣∣∣∣ τ0 > 0
x ∈W 1,p

0 (Ω,Rn)

}

+

{(
〈Fu(x∗, u∗) , u− u∗ 〉Lq −Lp

G(x∗, u)−G(x∗, u∗)

) ∣∣∣∣∣ u ∈ U
}

;

=

{(
τ0 + 〈Fx(x∗, u∗) , x− x∗ 〉Lq −Lp

Jx− Jx∗

) ∣∣∣∣∣ τ0 > 0
x ∈W 1,p

0 (Ω,Rn)

}
(2.12)

+

{(
〈Fu(x∗, u∗) , u− u∗ 〉Lq −Lp

−u∗ + u

) ∣∣∣∣∣ u ∈ U
}

;

D =

{(
−%

o

) ∣∣∣∣∣ % > 0
}
. (2.13)

Obviously, C is a convex set with
(

0
o

)
∈ C. It is also clear that C ∩ D = Ø since by the variational lemma,

from
(

γ
o

)
∈ C it follows γ > 0 and

(
γ
o

)
/∈ D. We claim now

Lemma 2.5. It holds cl (C) ∩ D = Ø as well.

Proof. Consider a sequence {
(

γN

zN

)
} , C →

(
γ
o

)
. Then there exist τN > 0, xN ∈ W 1,p

0 (Ω,Rn) and uN ∈ U
with

γN = τN + 〈Fx(x∗, u∗) , xN − x∗ 〉Lq −Lp + 〈Fu(x∗, u∗) , uN − u∗ 〉Lq −Lp →R γ ; (2.14)

zN = JxN − uN →Lp(Ω,Rnm) o . (2.15)

Since the set U ⊂ L
p(Ω,Rnm) is bounded, convex and closed in norm and thus weakly closed, we can

choose a subsequence {uN ′ } of {uN } converging weakly to ũ ∈ U. The sequence { JxN } is bounded in
L

p-norm as well, thus, by equivalence of the norms, {xN } is bounded in W 1,p
0 -norm as well as in Lp-norm.

Consequently, the second and third members in γN are bounded, and so is the sequence { τN } . The W 1,p
0 -

norm bounded sequence {xN ′ } admits a further subsequence {xN ′′ } converging weakly to x̃ ∈W 1,p
0 (Ω,Rn).

This subsequence can be chosen in such a way that the Jacobians JxN ′′
converge weakly to a function

z̃ ∈ L
p(Ω,Rnm) as well. From the weak continuity of the differentiation operator, we obtain z̃ = Jx̃, and

from the assumed convergence (JxN − uN ) → o we get finally Jx̃ − ũ = o. Consequently, (x̃, ũ) forms an
admissible pair in (P)0, and the variational lemma yields γ > 0.

25) Keeping the terminology from [ Ioffe/Tichomirow 79 ] , we could also write G(x, u∗) − G(x∗, u∗) = Jx − Jx∗ =

〈Gx(x∗, u∗) , x− x∗ 〉.
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• Step 3: Separation of cl cone (C) and cl cone (D). We make use of the following

Theorem 2.6. (Separation theorem for convex cones) 26) Consider two closed convex cones A and B
within a separable normed space E. If A ∩ B = { o } and A is locally compact then there exists some linear,
continuous functional f : E → R with f < 0 on A \ (A ∩ (−A)), f = 0 on (A ∩ (−A)) ∪ (B ∩ (−B)) and
f > 0 on B \ (B ∩ (−B)).

The theorem can be applied to E = R×Lp(Ω,Rnm), equipped with the norm topology, and to the closed
convex cones A = cl cone (D) and B = cl cone (C) since cl cone (D) = {

(−%
o

) ∣∣ % > 0 } is locally compact, and
by Lemma 2.5. it holds that cl cone (C) ∩ cl cone (D) = {

(
0
o

)
}. We see further that A ∩ (−A) = {

(
0
o

)
}.

Theorem 2.6. guarantees, then, the existence of some nontrivial linear, continuous functional (λ0 , y ) ∈
R×Lq(Ω,Rnm), p−1 + q−1 = 1, which separates cl cone (C) and cl cone (D) properly. This means that

λ0 γ1 + 〈 y , z1 〉Lq −Lp > λ0 γ2 + 〈 y , z2 〉Lq −Lp ∀
(

γ1
z1

)
∈ cl cone (C) ∀

(
γ2
z2

)
∈ cl cone (D) =⇒

λ0 γ1 + 〈 y , z1 〉Lq −Lp > λ0 γ2 ∀
(

γ1
z1

)
∈ C ∀

(
γ2
o

)
∈ D . (2.16)

From this variational inequality, the first-order necessary conditions can be derived as follows.

a) Nonnegativity: λ0 > 0. This is the immediate consequence from inserting
(

1
o

)
∈ C (generated with τ0 = 1,

x = x∗, u = u∗) and
(−1

o

)
∈ D into (2.16).

b) Derivation of (M). Insert into the left-hand side of (2.16) elements
(

γ1
z1

)
∈ C generated with τ0 = 0,

x = x∗ and arbitrary u ∈ U. Together with the convexity of the integrand f in its last variable, we get (M):

0 6 λ0 〈Fu(x∗, u∗) , u− u∗ 〉Lq −Lp − 〈 y , u− u∗ 〉Lq −Lp

6 λ0

(
F (x∗, u)− F (x∗, u∗)

)
− 〈 y , u− u∗ 〉Lq −Lp . (2.17)

c) Derivation of (K). Insert into the left-hand side of (2.16) some element
(

γ1
z1

)
∈ C generated with τ0 = 0,

arbitrary x ∈W 1,p
0 (Ω,Rn) and u = u∗. Then it follows

λ0 〈Fx(x∗, u∗) , x− x∗ 〉Lq −Lp + 〈 y , Jx− Jx∗ 〉Lq −Lp > 0 . (2.18)

At the same time, inserting the element generated with τ0 = 0, (2x∗ − x) ∈ W
1,p
0 (Ω,Rn) and u = u∗, we

obtain

λ0 〈Fx(x∗, u∗) , x∗ − x 〉Lq −Lp + 〈 y , Jx∗ − Jx 〉Lq −Lp > 0 . (2.19)

Equations (2.18) and (2.19) give together (K).

• Step 4: Occurrence of the regular case. Let us assume, on the contrary, that λ0 = 0. Then (K) reads as

〈 y , Jx 〉Lq −Lp = 〈 y , Jx∗ 〉Lq −Lp ∀x ∈W 1,p
0 (Ω,Rn) , (2.20)

which implies 〈 y , Jx∗ 〉 = 〈 y , u∗ 〉Lq −Lp = 0. Then from the maximum condition (M) it follows that

−〈 y , u− u∗ 〉Lq −Lp = −〈 y , u 〉Lq −Lp > 0 ∀u ∈ U . (2.21)

Since o ∈ int (K) by assumption, U contains some L∞(Ω,Rnm)-norm ball V, and we conclude

〈 y , u 〉Lq −Lp = 0 ∀u ∈ U ∩ V . (2.22)

26) [Klee 55 ] , p. 315, Theorem 2.7.
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This means, however, that y vanishes on all functions z ∈ C∞
0 (Ω,Rnm) ∩ Lp(Ω,Rnm) and thus on the whole

space Lp(Ω,Rnm). 27) Consequently, from λ0 = 0 it follows that y = oLq(Ω,Rnm), and we have arrived at a
contradiction since the separating hyperplane for cl cone (C) and cl cone (D) was described by a nontrivial
functional. We obtain λ0 > 0, and the proof is complete.

Proof of Theorem 2.3. Since K ⊂ Rnm is a convex body with nonempty interior, the countable subset
K ∩ Qnm is dense in K. Consider the null sets of the non-Lebesgue points of u∗ij , yij , f( · , x∗( · ), u∗( · )) and
f( · , x∗( · ), v) for v ∈ K ∩ Qnm. The countable union N of these subsets is still a Lebesgue null set. Since
Ω ⊂ Rm is the closure of a bounded Lipschitz domain, ∂Ω is a null set as well. 28)

We fix t0 ∈ int (Ω) \ N and choose a point v0 ∈ K ∩ Qnm. Then a closed ball V = K(t0, %) with center in t0
is contained in int (Ω), and the function

u(t) = 1V(t) · Dist ( t, ∂V )
Dist (t0, ∂V)

·
(
v0 − u∗(t)

)
+ 1( Ω \V )(t) · u∗(t) (2.23)

belongs to U since v0 ∈ K and u∗(t) ∈ K (∀) t ∈ Ω. Further, we have u(t0) = v0, and t0 is a Lebesgue point
of u. Since the set of Lebesgue points is conserved under linear combinations as well as multiplication by
continuous functions, t0 is a Lebesgue point of uij yij , and from f(t0, x∗(t0), u(t0)) = f(t0, x∗(t0), v0) we see
that t0 is a Lebesgue point of f( · , x∗( · ), u( · )) as well. Thus we are allowed to form the Lebesgue derivative
of (M) at the point t0 after inserting u into the condition.
From a Vitali covering of Ω, 29) choose some decreasing sequence {EN } of closed subsets of Ω with

⋂
N EN =

{ t0 }. Together with u and u∗, all functions

uN (t) = 1EN (t) · u(t) + 1( Ω \EN )(t) · u∗(t) (2.24)

are admissible controls, and from (M) it follows:

λ0

∫
Ω

(
f(t, x∗(t), uN (t))− f(t, x∗(t), u∗(t))

)
dt −

∑
i,j

∫
Ω

(
uN

ij (t)− u∗ij(t)
)
yij(t) dt (2.25)

= λ0

∫
EN

(
f(t, x∗(t), u(t))− f(t, x∗(t), u∗(t))

)
dt −

∑
i,j

∫
EN

(
uij(t)− u∗ij(t)

)
yij(t) dt > 0 ∀N ∈ N .

When taking the mean values of the integrals, we obtain

lim
N→∞

1
|EN |

(
λ0

∫
EN

(
f(t, x∗(t), u(t))− f(t, x∗(t), u∗(t))

)
dt −

∑
i,j

∫
EN

(
uij(t)− u∗ij(t)

)
yij(t) dt

)
(2.26)

= λ0

(
f(t0, x∗(t0), u(t0))− f(t0, x∗(t0), u∗(t0))

)
−
∑
i,j

(
uij(t0)− u∗ij(t0)

)
yij(t0)

= λ0

(
f(t0, x∗(t0), v0)− f(t0, x∗(t0), u∗(t0))

)
−
∑
i,j

(
(v0)ij − u∗ij(t0)

)
yij(t0) > 0 . (2.27)

The inequality (2.27) holds at every fixed t0 ∈ int (Ω) \ N for arbitrary v0 ∈ K ∩ Qnm. Since its left-hand
side is a continuous function of v0, (2.27) may be extended to the whole set K.

27) [Adams 78 ] , p. 31, Theorem 2.19.
28) [Wagner 06 ] , p. 122, Lemma 9.2.
29) Cf. [Dunford/Schwartz 88 ] , p. 212, Definition 2.
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3. Helmholtz-Weyl decomposition of the multipliers.

a) Helmholtz-Weyl decomposition of Lp-spaces.

The classical decomposition of a three-dimensional C1-vector field into its gradient and curl component 30) can
be generalized within the frame of Lp(Ω,Rnm) spaces. 31) We provide some sufficient conditions guaranteeing
that the above mentioned subspace { z ∈ Lp(Ω,Rnm)

∣∣ ∃x ∈ W 1,p
0 (Ω,Rn) with z = Jx } possesses a direct

complement within Lp(Ω,Rnm).

Definition 3.1. (Subspaces of “gradient” and “curl” fields) Let Ω ⊂ Rm be the closure of a bounded
domain. Then for 1 < p < ∞ and p−1 + q−1 = 1, we define the following subspaces of Lp(Ω,Rnm) (which
are closed in norm):

G
p(Ω,Rnm) =

{
z ∈ Lp(Ω,Rnm)

∣∣ ∃x ∈W 1,p
0 (Ω,Rn) with z = Jx

}
; (3.1)

R
p(Ω,Rnm) =

{
z ∈ Lp(Ω,Rnm)

∣∣ m∑
j=1

∫
Ω

zij(t)
∂ψi

∂tj
(t) dt = 0 ∀ψi ∈W 1,q

0 (Ω,R) , 1 6 i 6 n
}
. (3.2)

Within the definition of Rp(Ω,Rnm), one may restrict oneself to test functions ψi ∈ C
∞
0 (Ω,R) as a dense

subset of W 1,q
0 (Ω,R).

Theorem 3.2. (Weyl decomposition of Lp(Ω,Rnm) ) Let Ω ⊂ Rm be the closure of a bounded Lipschitz
domain.

1) 32) Assume m = 2 and 4
3 6 p 6 4. Then every function z ∈ L

p(Ω,R2n) admits a unique decomposition
z = z′ + z′′ with z′ ∈ G

p(Ω,R2n) and z′′ ∈ R
p(Ω,R2n). Consequently, Lp(Ω,R2n) = G

p(Ω,R2n) ⊕ R
p(Ω,

R2n) can be written as the direct sum of its subspaces Gp(Ω,R2n) and Rp(Ω,R2n), and the mapping z 7−→ z′

defines a linear, continuous operator.

2) Assume m > 2. Then every function z ∈ L
2(Ω,Rnm) admits a unique decomposition z = z′ + z′′ with

z′ ∈ G
2(Ω,Rnm) and z′′ ∈ R

2(Ω,Rnm). Consequently, L2(Ω,Rnm) = G
2(Ω,Rnm) ⊕ R

2(Ω,Rnm) can be
written as the orthogonal sum of its subspaces G2(Ω,Rnm) and R

2(Ω,Rnm), and the mapping z 7−→ z′

defines a linear, continuous projection operator.

3) Assume m > 2 and 1 < p < ∞. If ∂Ω can be represented by a C
1-curve then every function z ∈

L
p(Ω,Rnm) admits a unique decomposition z = z′ + z′′ with z′ ∈ G

p(Ω,Rnm) and z′′ ∈ R
p(Ω,Rnm).

Consequently, Lp(Ω,Rnm) = G
p(Ω,Rnm) ⊕ R

p(Ω,Rnm) can be written as the direct sum of its subspaces
G

p(Ω,Rnm) and Rp(Ω,Rnm), and the mapping z 7−→ z′ defines a linear, continuous operator.

b) Decomposition of the multipliers within the maximum principle.

Applying the Weyl decomposition theorem to the control variables and the multipliers, the optimality con-
ditions from Section 2.b) can be further refined.

Theorem 3.3. (Weyl decomposition of the multipliers from Theorem 2.2.) Consider the problem
(P)0 under the assumptions of Theorem 2.2. together with a global minimizer (x∗, u∗).

30) [Fichtenholz 92 ] , p. 334 f.
31) In the literature, there are different termini (Helmholtz decomposition, Weyl decomposition resp. Hodge decomposi-

tion). We adapt the terminology from [Simader/Sohr 92 ] and [Simader/Sohr 96 ] .
32) [Mitrea 02 ] , p. 362, Theorem 4.4., (4.28).
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1) Assume m = 2 and 4
3 6 p 6 4. Then there exist multipliers λ0 > 0, y′ ∈ Gq(Ω,R2n) and y′′ ∈ Rq(Ω,R2n),

p−1 + q−1 = 1, satisfying the conditions (M) and (K) below.

2) Assume m > 2 and p = 2. Then there exist multipliers λ0 > 0, y′ ∈ G2(Ω,Rnm) and y′′ ∈ R2(Ω,Rnm),
satisfying the conditions (M) and (K) below.

3) Assume m > 2 and 1 < p < ∞. If ∂Ω can be represented by a C
1-curve then there exist multipliers

λ0 > 0, y′ ∈ Gq(Ω,Rnm) and y′′ ∈ Rq(Ω,Rnm), p−1 + q−1 = 1, satisfying the conditions (M) and (K) below.

In all of the three cases, the conditions (M) and (K) read as follows while u′, u′′ denote the components of
u ∈ Lp(Ω,Rnm) in the Weyl decomposition:

(M) : λ0

∫
Ω

(
f(t, x∗(t), u′(t) + u′′(t))− f(t, x∗(t), u∗(t))

)
dt −

∑
i,j

∫
Ω

(
u′ij(t)− u∗ij(t)

)
y′ij(t) dt

−
∑
i,j

∫
Ω

u′′ij(t) y
′′
ij(t) dt > 0 ∀u′ ∈ Gp(Ω,Rnm) , u′′ ∈ Rp(Ω,Rnm) : u′ + u′′ ∈ U ;

(K) : λ0

∑
i

∫
Ω

∂f

∂ξi
(t, x∗(t), u∗(t)) ·

(
xi(t)− x∗i (t)

)
dt +

∑
i,j

∫
Ω

( ∂xi

∂tj
(t)− ∂x∗i

∂tj
(t)
)
y′ij(t) dt = 0

∀x ∈W 1,p
0 (Ω,Rn) .

4) Under the assumptions of 1), 2) or 3) the following implication is true: If the integrand f does not depend
on ξ then y′ = o.

Remark. Since u′(t0), u′′(t0) ∈ K does not necessarily follow from u(t0) = u′(t0)+u′′(t0) ∈ K, the inclusion
of the Weyl decomposition into the pointwise formulation of the maximum condition meets a difficulty.

c) Proofs.

Proof of Theorem 3.2. 2) 33) We derive the assertion from [Simader/Sohr 92 ] , p. 5, Theorem 1.4. and
Remark 1.5. After these propositions, every function z ∈ L2(Ω,Rm) admits a unique Helmholtz decomposi-
tion z = v′ + v′′ where

v′ = ∇x , x ∈W 1,2(Ω,R) and v′′ ∈ cl L2(Ω,Rm)

({
z ∈ C0

0(Ω,R
m)
∣∣ m∑

j=1

∂zj

∂tj
(t) ≡ 0

})
. (3.3)

After equipping the space W 1,2
0 (Ω,R) with the scalar product

〈x , ψ 〉W 1,2
0 −W 1,2

0
=
∫

Ω

∇x(t)∇ψ(t) dt = 〈∇x , ∇ψ 〉L2 −L2 , (3.4)

let us define the linear, continuous functional h(ψ) : W 1,2
0 (Ω,R) → R through h(ψ) = 〈∇x , ∇ψ 〉L2 −L2 .

By Riesz’ theorem, h admits the unique representation

h(ψ) = 〈∇x , ∇ψ 〉L2 −L2 = 〈∇u , ∇ψ 〉L2 −L2 ∀ψ ∈W 1,2
0 (Ω,R) (3.5)

with some function u ∈W 1,2
0 (Ω,R). Then we have

〈∇x−∇u , ∇ψ 〉L2 −L2 = −〈x− u , ∆ψ 〉L2 −L2 = 0 (3.6)

for all test functions ψ ∈ C
∞
0 (Ω,R), and from Weyl’s lemma 34) it follows that (x − u) agrees almost

everywhere with a harmonic function. This means particularly that w = ∇x − ∇u belongs to L2(Ω,Rm)

33) The following proof was communicated to me by C. Simader on 11. 03. 2005.
34) [Morrey 66 ] , p. 42, Theorem 2.3.1.
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and, consequently, to R2(Ω,Rm) as well. Summing up, we get from the (unique) Helmholtz decomposition
z = v′ + v′′ the (unique) Weyl decomposition z = z′ + z′′ with z′ = ∇u and z′′ = v′′ + (∇x−∇u). From the
definition of the subspaces G2(Ω,Rm) and R2(Ω,Rm) we see that the decomposition is orthogonal.

3) In consequence of our smoothness assumption about ∂Ω, we may apply [Simader/Sohr 96 ] , p. 45,
Theorem 1.2, together with p. 11 f., (0.23) – (0.25): Every function z ∈ L

p(Ω,Rm) admits a unique de-
composition z = z′ + z′′ with z′ = ∇x ∈ G

p(Ω,Rm) and z′′ ∈ R
p(Ω,Rm). Within this decomposition,

x ∈W 1,p
0 (Ω,R) is the unique solution of the variational equality

〈∇ψ , ∇x 〉Lq −Lp = 〈∇ψ , z 〉Lq −Lp ∀ψ ∈W 1,q
0 (Ω,R) . (3.7)

Further, the estimate

‖ z′ ‖Lp(Ω,Rm) + ‖ z′′ ‖Lp(Ω,Rm) 6 C ‖ z ‖Lp(Ω,Rm) (3.8)

holds where the constant C > 0 depends only on p and Ω.

Proof of Theorem 3.3. 1) – 3) In all of the three cases, according to Theorem 3.2. the functions from the
space Lp(Ω,Rnm) as well as from L

q(Ω,Rnm), p−1 + q−1 = 1, admit a unique Weyl decomposition. Within
the conditions (M) and (K) from Theorem 2.2., we decompose the difference of the controls (u− u∗) as well
as the multiplier y, and by Definition 3.1. we obtain

−〈 y′ + y′′ , (u′ − u∗) + u′′ 〉Lq −Lp = −〈 y′ , u′ − u∗ 〉Lq −Lp − 〈 y′′ , u′′ 〉Lq −Lp (3.9)

and

〈 y′ + y′′ , Jx− Jx∗ 〉Lq −Lp = 〈 y′ , Jx− Jx∗ 〉Lq −Lp . (3.10)

Then the conditions take on the claimed shape.

4) If additionally f does not depend on ξ then (K) reduces to

〈 y′ , Jx− Jx∗ 〉Lq −Lp = 0 ∀x ∈W 1,p
0 (Ω,Rn) , (3.11)

and y′ ∈ Gq(Ω,Rnm) belongs at the same time to Rq(Ω,Rnm) which implies y′ = o.

4. Application of multidimensional control to the optical flow problem.

a) The concept of the optical flow.

In this section, we describe greyscale images (independently of resolution) through (at least) measurable
functions I defined on a rectangle Ω ⊂ R2 with values 0 6 I(t) 6 1 (∀) t ∈ Ω. Consider now a family
{ I(t, τ) } of greyscale images with identical ranges and zero boundary values (assuming that all images are
embedded into a constant frame), depending on an additional time parameter −T < τ < T . Then we look
for a phase flux X(t, τ) = (X1(t, τ) , X2(t, τ) )T : Ω× (−T , T ) → R2 which conserves the grey-level values
in the process of transformation of images. Thus the flux obeys the equation

I(t1, t2, τ) = I( t1 −X1(t, τ) , t2 −X2(T, τ) , 0 ) , −T < τ < T (4.1)

for all t ∈ Ω. The inital values in τ = 0 are

X1(t, 0) = 0 , X2(t, 0) = 0 (4.2)
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for all t ∈ Ω. If, moreover, the image data and the vector field X(t, τ) depend continuously differentiable on
the time variable, then differentiation of (4.1) by τ leads to the first-order PDE

Iτ (t, τ) = − It1( t−X(t, τ) , 0 ) · (X1)τ (t, τ) − It2( t−X(t, τ) , 0 ) · (X2)τ (t, τ) , (4.3)

from which there results for τ = 0 the so-called optical flow constraint

It1(t, 0) (X1)τ (t, 0) + It2(t, 0) (X2)τ (t, 0) + Iτ (t, 0) = 0 ∀ t ∈ Ω . (4.4)

The vector fieldsX(t, τ) and x(t, τ) =
(
(X1)τ (t, τ) , (X2)τ (t, τ)

)T are called optical displacement resp. optical
flow. 35) Although in most cases the existence of vector fields X and x with the claimed properties cannot be
assured a priori either in local or in global sense, the concept of the optical flow is widely accepted and finds
numerous applications, e. g. for compression of video image data, automatic retouching of movie sequences
during the process of digitalization, motion tracking or even reconstruction of three-dimensional surfaces by
estimation of the disparity map for a stereo image pair. 36)

b) Determination of the optical flow by variational methods.

Since the beginning of the 80s, variational methods were proposed for the determination of the optical flow.
Since this quantity is not uniquely determined by equation (4.4) (“aperture problem”), the objective within
these problems consists of two terms at least. In the first one, the defect in the equation (4.4) is minimized
while the second one is a regularization term involving the first derivatives of x. Then the variational problem
(in “spatial formulation”) reads as follows:

(V)2 : F (x) =
∫

Ω

(
It1(t, 0)x1(t, 0) + It2(t, 0)x2(t, 0) + Iτ (t, 0)

)2

dt (4.5)

+µ

∫
Ω

r(t,∇x1(t, 0),∇x2(t, 0)) dt −→ inf ! ; x ∈W 1,p
0 (Ω,R2)

where I ∈ W
1,∞( Ω × (−T , T ) , R ), µ > 0 and r ∈ C

2(Ω × R4,R). 37) The proposed regularizing terms
can be classified under different viewpoints. On the one hand, for sufficiently smooth solutions, the Euler-
Lagrange equations admit an interpretation in terms of diffusion processes. Another classification relies upon
the comprehension of the partial derivatives of I which is important for the discernment of “moving edges”
within the flow. 38) Let us now quote some typical examples.

1) Quadratic regularization. Here the integrands are of the type

r(v) = (v11)2 + (v12)2 + (v21)2 + (v22)2 (4.6)

(isotropic, flow-driven regularization) 39) or

r(v) = ϕ
(
It1(t, 0)2 + It2(t, 0)2

)
·
(
(v11)2 + (v12)2 + (v21)2 + (v22)2

)
(4.7)

35) Cf. [Aubert/Kornprobst 02 ] , pp. 182 ff. Concerning criticism of the concept, cf. for example [Florack/Niessen/

Nielsen 98 ] , p. 265 f.
36) See [Brox/Bruhn/Weickert 06 ] , [Grossauer 06 ] , [Hinterberger/Scherzer 01 ] , [Hinterberger/Scher-

zer/Schnörr/Weickert 02 ] , p. 69 f., and [Slesareva/Bruhn/Weickert 05 ] .
37) Recently, the optical flow problem has been investigated for x ∈ BV (Ω,R2) in the literature as well. See, for

example, [Aubert/Deriche/Kornprobst 99 ] , pp. 162 – 174, [Hinterberger/Scherzer/Schnörr/Weickert

02 ] , pp. 81 ff., and [Kornprobst/Deriche/Aubert 99 ] , pp. 9 ff.
38) [Weickert/Brox 02 ] , pp. 252 – 258, and [Weickert/Schnörr 01 ] , pp. 247 – 253.
39) [Horn/Schunck 81 ] , p. 191, and [Weickert/Brox 02 ] , p. 258.
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with a monotonically decreasing, positive function ϕ : [ 0 , ∞ ) → ( 0 , ∞ ) (isotropic, image-driven regulari-
zation). 40)

2) Convex, nonquadratic regularization. Some of the proposed terms are

r(v) = 2
√

1 + (v11)2 + (v12)2 + 2
√

1 + (v21)2 + (v22)2 − 4 , (4.8)

(anisotropic, flow-driven regularization) 41) or

r(v) =
1

2α2 + (It1)2 + (It2)2
· trace

[(
v11 v12
v21 v22

)(
α2 + (It2)

2 −It1It2
−It1It2 α2 + (It1)

2

)(
v11 v21
v12 v22

)]
(4.9)

=
1

2α2 + (It1)2 + (It2)2

·
(
α2
(
(v11)2 + (v12)2 + (v21)2 + (v22)2

)
+
(
It2 v11 − It1 v12

)2 +
(
It2 v21 − It1 v22

)2 )
with It1 = It1(t, 0), It2 = It2(t, 0) and α > 0 (anisotropic, image-driven regularization). 42)

c) Determination of the optical flow as multidimensional control problem.

Since the optical flow x is an artificial quantity, there is a large degree of freedom in the choice of its space
of origin. In this choice, one can orientate oneself to the requirements that arise with regard to the further
processing and evaluation of the optical flow data, which now represents the image sequence. In this context,
the addition of control restrictions of the shape JX(t) ∈ K resp. Jx(t) ∈ K 43) (∀) t ∈ Ω to the variational
problem (V)2 presents at least three advantages: a) the presence of a control restriction has a regularizing
effect of its own, b) the analytical properties of the reference image I(t, 0) carry over to the representations
I(t, τ) ≈ I( t1−τ x1(t, 0) , t2−τ x2(t, 0) , 0 ) (in particular, the Lipschitz continuity of I(t, 0) implies Lipschitz
continuity of the compositions), 44) and c) the optimal control can be used for simultaneous edge detection
within the flow. 45) When imposing these restrictions, (V)2 will be altered into a Dieudonné-Rashevsky type
problem of shape (P)0:

(P)2 : F (x, u) =
∫

Ω

(
It1(t, 0)x1(t) + It2(t, 0)x2(t) + Iτ (t, 0)

)2

dt (4.10)

+µ

∫
Ω

r(t, u11(t), u12(t), u21(t), u22(t)) dt −→ inf ! ;

(x, u) ∈W 1,p
0 (Ω,R2) × L

∞(Ω,R4) ; (4.11)

Jx(t) =
(
u11(t) u12(t)
u21(t) u22(t)

)
(∀) t ∈ Ω ; (4.12)

u ∈ U =
{
u ∈ Lp(Ω,R4)

∣∣ u11(t)2 + u12(t)2 + u21(t)2 + u22(t)2 6 R2 (∀) t ∈ Ω
}
. (4.13)

40) [Weickert/Brox 02 ] , p. 258, and [Weickert/Schnörr 01 ] , p. 248, (15).
41) [Aubert/Deriche/Kornprobst 99 ] , p. 163.
42) [Enkelmann 88 ] , p. 154, [Hinterberger/Scherzer/Schnörr/Weickert 02 ] , p. 70 f., and [Weickert/Brox

02 ] , p. 258.
43) Here and in the following, the Jacobians Jx(t) contain the partial derivatives with respect to the space coordinates

t1 and t2 only.
44) Concerning problems of type (V)2, in the literature the overall assumption is that the image data I(t, τ) are Lip-

schitz at least, cf. [Aubert/Deriche/Kornprobst 99 ] , p. 165, (3.12), [Hinterberger/Scherzer/Schnörr/

Weickert 02 ] , p. 82, [Weickert/Schnörr 01 ] , p. 253, after (56).
45) Cf. a forthcoming paper together with C. Brune.
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Here we assume 1 6 p < ∞, µ > 0 and R > 0. The dependence of the unknowns (x, u) on the parameter
τ = 0 is suppressed in notation. As integrand r ∈ C

2(Ω × R4,R) within the regularization term, any of
the convex functions from above could be chosen. Following the approach of [Pickenhain/Wagner 00a ] ,
pp. 222 – 224, the existence of global minimizers in (P)2 can be guaranteed, and the Pontryagin maximum
principle in the shape of Theorems 2.2. and 2.3. is available. In consequence of these theorems, the necessary
optimality conditions read as follows:

Theorem 4.1. (Pontryagin’s maximum principle for the problem (P)2 ) Consider (P)2 with the
following assumptions about the data: Ω ⊂ R2 is the closure of a bounded Lipschitz domain, 1 < p < ∞,
µ > 0, R > 0; the function I : Ω × (−T , T ) → R with 0 6 I(t, τ) 6 1 ∀ (t, τ) ∈ Ω × (−T , T ) is
continuously differentiable with respect to all its arguments, and the function r(t, v) : Ω × R4 → R is twice
continuously differentiable and convex with respect to v.
Then (P)2 satisfies the assumptions of Theorem 2.2. and 2.3., and for a given global minimizer (x∗, u∗) of
(P)2 there exist multipliers λ0 > 0 and y ∈ L

q(Ω,R4), p−1 + q−1 = 1, satisfying the following conditions
(M), (K) and (MP):

(M) : λ0 µ

∫
Ω

(
r( t, u(t) )− r( t, u∗(t) )

)
dt −

2∑
i,j=1

∫
Ω

(
uij(t)− u∗ij(t)

)
yij(t) dt > 0 ∀u ∈ U ;

(K) : 2λ0

∫
Ω

( (
It1(t, 0)x∗1(t) + It2(t, 0)x∗2(t) + Iτ (t, 0)

)
·

2∑
i=1

Iti
(t, 0)

(
xi(t)− x∗i (t)

) )
dt

+
2∑

i,j=1

∫
Ω

( ∂xi

∂tj
(t)− ∂x∗i

∂tj
(t)
)
yij(t) dt = 0 ∀x ∈W 1,p

0 (Ω,R2) ;

(MP) : −λ0 µ r( t, u∗(t) ) +
2∑

i,j=1

u∗ij(t) yij(t) = Max
v ∈R2×2, | v |6 R

(
−λ0 µ r(t, v) +

2∑
i,j=1

vij yij(t)
)

(∀) t ∈ Ω .

Remarks. a) In two recent papers of Borz̀i/Ito/Kunisch, the reconstruction resp. smoothing of given
image data Ĩ(t, τ) (which are assumed to be degraded) and the determination of the optical flow are merged
into a common optimization problem. 46) The authors search at the same time for representations I(t, τ) and
an optical flow x(t, τ) minimizing an objective of the shape

F (I, x) =
∫

Ω

(
Ĩ(t, τ0)− I(t, τ0)

)2

dt +
∫

Ω

r( (x1)τ (t, τ0), ... , (x2)t2(t, τ0) ) dt (4.14)

under the constraint

It1(t, τ)x1(t, τ) + It2(t, τ)x2(t, τ) + Iτ (t, τ) = 0 ∀ (t, τ) ∈ Ω× [ 0 , τ0 ] , I(t, 0) = Ĩ(t, 0) . (4.15)

In this setting as well, it is reasonable to add control restrictions on ∇I resp. Jx to the variational problem.

b) In analogy to [Aubert/Kornprobst 02 ] , pp. 80 – 83, one may choose nonconvex regularizing terms
of Perona-Malik type, e. g. with the integrand

r(v) =
(v11)2 + (v12)2

1 + (v11)2 + (v12)2
+

(v21)2 + (v22)2

1 + (v21)2 + (v22)2
, (4.16)

46) [Borz̀ı/Ito/Kunisch 02a ] and [Borz̀ı/Ito/Kunisch 02b ] . In the terminology of Ioffe/Tichomirow, how-

ever, the problems formulated by these authors are Lagrange problems with an equality constraint without control

restrictions on ∇I resp. Jx. Cf. [ Ioffe/Tichomirow 79 ] , p. 97.
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in the variational resp. control problems (V)2 and (P)2 as well. 47) Then instead of problem (P)2 one has to
consider its quasiconvex relaxation.

d) Variational and optimal control methods for the determination of the optical displacement.

For the determination of the optical displacement, one can formulate a variational problem as well:

(V)3 : F (X) =
∫

Ω

(
I(t1, t2, τ0)− I( t1 −X1(t, τ0) , t2 −X2(t, τ0) , 0 )

)2

dt (4.17)

+ µ

∫
Ω

r(t,∇X1(t, τ0),∇X2(t, τ0)) dt −→ inf ! ; X ∈W 1,p
0 (Ω,R2)

with τ0 ∈ (−T , T ), I, µ and r as in (V)2. 48) Analogously to (V)2, (V)3 can be replaced by a multidimen-
sional control problem

(P)3 : F (X,u) =
∫

Ω

(
I(t1, t2, τ0)− I( t1 −X1(t) , t2 −X2(t) , 0 )

)2

dt (4.18)

+ µ

∫
Ω

r(t, u11(t), u12(t), u21(t), u22(t)) −→ inf ! ;

(X,u) ∈W 1,p
0 (Ω,R2) × L

∞(Ω,R4) ; (4.19)

JX(t) =
(
u11(t) u12(t)
u21(t) u22(t)

)
(∀) t ∈ Ω ; (4.20)

u ∈ U =
{
u ∈ Lp(Ω,R4)

∣∣ u11(t)2 + u12(t)2 + u21(t)2 + u22(t)2 6 R2 (∀) t ∈ Ω
}

(4.21)

where the dependence of the unknowns (X,u) on the parameter τ = τ0 is suppressed in notation. For (P)3,
we get from Theorems 2.2. and 2.3. the Pontryagin maximum principle in the following shape:

Theorem 4.2. (Pontryagin’s maximum principle for the problem (P)3 ) Consider (P)3 with the
following assumptions about the data: Ω ⊂ R2 is the closure of a bounded Lipschitz domain, 1 < p < ∞,
−T < τ0 < T , µ > 0, R > 0; the function I( · , τ0) is measurable and essentially bounded with 0 6 I(t, τ0) 6 1
(∀) t ∈ Ω, the function I( · , 0 ) : Ω → R is continuously differentiable with 0 6 I(t, 0) 6 1 ∀ t ∈ Ω. The
function r : Ω × R4 → R is twice continuously differentiable and convex with respect to v.
Then (P)3 satisfies all assumptions of Theorem 2.2. and 2.3., and for a given global minimizer (X∗, u∗) of
(P)3 there exist multipliers λ0 > 0 and y ∈ L

q(Ω,R4), p−1 + q−1 = 1, satisfying the following conditions
(M), (K) and (MP):

(M) : λ0 µ

∫
Ω

(
r( t, u(t) )− r( t, u∗(t) )

)
dt −

2∑
i,j=1

∫
Ω

(
uij(t)− u∗ij(t)

)
yij(t) dt > 0 ∀u ∈ U ;

(K) : 2λ0

∫
Ω

( (
I(t1, t2, τ0)− I( t1 −X∗

1 (t) , t2 −X∗
2 (t) , 0 )

)
·

2∑
i=1

Iti
( t1 −X∗

1 (t) , t2 −X∗
2 (t) , 0 ) ·

(
Xi(t)−X∗

i (t)
) )

dt

+
2∑

i,j=1

∫
Ω

(
(Xi)tj

(t)− (X∗
i )tj

(t)
)
yij(t) dt = 0 ∀X ∈W 1,p

0 (Ω,R2) ;

(MP) : −λ0 µ r( t, u∗(t) ) +
2∑

i,j=1

u∗ij(t) yij(t) = Max
v ∈R2×2, | v |6 R

(
−λ0 µ r(t, v) +

2∑
i,j=1

vij yij(t)
)

(∀) t ∈ Ω .

47) Cf. [Wagner 06 ] , p. 114.
48) See [Alvarez/Weickert/Sánchez 00 ] , pp. 41 ff., and [Enkelmann 88 ] , p. 151.
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5. Application of multidimensional control to the Shape-from-Shading problem.

a) Shape from Shading and Horn’s equation.

We model a piece of earth’s surface by a function graph { ( t1, t2, X(t1, t2) )T ∈ R3
∣∣ (t1, t2) ∈ Ω ⊂ R2 }

where the function X : Ω → R is at least Lipschitz continuous. 49) Assume that a light source with constant
intensity is situated in the point at infinity. Then we may imagine that the surface will be illuminated
by parallel rays whose direction is given by a unit vector e = (η1, η2, η3)T. Assume further that an aerial
photograph I(t1, t2) of the surface is registered in the image plane { ( t1, t2, T3 )T ∈ R3

∣∣ (t1, t2) ∈ R2 } with
sup (t1,t2)∈Ω X(t1, t2) < T3 as greyscale image while the intensity I(t1, t2) is proportional to the amount
of the light reflected by the surface element do(t1, t2) in direction t3. Further, we adapt the assumption
widely used in the literature that the surface is Lambertian, i. e. the reflexion is completely diffuse. Then the
amount of light reflected by do(t1, t2) in some direction will depend only on the cosine of the angle between
the illuminant direction e and the normal vector n( t1, t2, X(t1, t2) ) of the surface element do(t1, t2). 50)

Consequently, for almost all t ∈ Ω, it holds that

I(t1, t2) = eT n( t1, t2, X(t1, t2) ) =
1√

1 +Xt1(t1, t2)2 +Xt2(t1, t2)2

 η1
η2
η3

T−Xt1(t1, t2)
−Xt2(t1, t2)

1

 . (5.1)

(5.1) is called Horn’s equation. The problem is now the recovering of the surface’s shape from the given
greyscale image(s). Thus for a given function I(t1, t2) : Ω → [ 0 , 1 ], we look for solutions X : Ω → R of
Horn’s equation which are Lipschitz continuous at least.

The following theorem shows that in general, the Dirichlet boundary-value problem for this PDE is ill-
posed. 51)

Theorem 5.1. (Dirichlet boundary-value problem for Horn’s equation)

1) (Vertical illumination) Given e = ( 0 , 0 , 1 )T and I ∈ C
0(Ω,R) with values 0 < ε 6 I(t) 6 η3 = 1,

then the Dirichlet boundary-value problem

I(t) ·
√

1 +Xt1(t)2 +Xt2(t)2 − 1 = 0 (∀) t ∈ Ω , X ∈W 1,∞
0 (Ω,R) (5.2)

possesses uncountably many solutions X ∈ W
1,∞
0 (Ω,R), and there exists a convex body K ⊂ R2 such that

∇X(t) ∈ K for almost all t ∈ Ω for any solution X.

2) (Almost vertical illumination) Given a unit vector e = ( η1 , η2 , η3 )T and I ∈ C0(Ω,R) with values
0 < η2 + ε 6 I(t) 6 1− ε 6 η3 < 1, then the Dirichlet boundary-value problem

I(t) ·
√

1 +Xt1(t)2 +Xt2(t)2 + η1Xt1(t) + η2Xt2(t) − η3 = 0 (∀) t ∈ Ω , X ∈W 1,∞
0 (Ω,R) (5.3)

possesses uncountably many solutions X ∈ W
1,∞
0 (Ω,R), and there exists a convex body K ⊂ R2 such that

∇X(t) ∈ K for almost all t ∈ Ω for any solution X.

49) We follow [Piechullek 00 ] , pp. 22 ff., and [Barnes/Zhang 00 ] , p. 127 f.
50) [Piechullek 00 ] , p. 24: “Although no natural surface shows exact Lambert reflexion, this simple model describes

very precisely the reflectance of bright, fine-grained surfaces.”
51) Cf. [Barnes/Zhang 00 ] , p. 129, Theorem 1.
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Remarks. a) The solutions of (5.2) resp. (5.3) are even dense within some subset of W 1,∞-functions with
respect to the L∞-norm topology . 52)

b) Lions/Rouy/Tourin provided an example which shows that without further assumptions about I(t),
even a C1-solution of (5.2) is not uniquely determined. 53)

b) Reconstruction of the surface by variational methods.

1) Variational formulations involving the second partial derivatives of X; single-image methods. As examples,
we present the methods of Horn/Brooks and Zheng/Chellappa where the Shape from Shading problem
is treated in the framework of calculus of variations. In both of them, the partial derivatives Xt1 and Xt2

are replaced by unknown functions x1, x2. In the objective, the defect in Horn’s equation is minimized
together with a regularizing term involving the first partial derivatives of x1 and x2 and thus the second
partial derivatives of the unknown surface X. Furthermore, the objective contains a term related to the
defect within the integrability condition for x1 and x2. In the method of Horn/Brooks, the variational
problem reads as 54)

(V)4 : F (x1, x2) =
∫

Ω

(
I(t) ·

√
1 + x1(t)2 + x2(t)2 +

2∑
j=1

ηj xj(t)− η3

)2

dt (5.4)

+
∫

Ω

( ∂x1

∂t2
(t)− ∂x2

∂t1
(t)
)2

dt + R(x1, x2) −→ inf ! ; x ∈W 1,p
0 (Ω,R2)

with 2 < p <∞. The regularization term used in this method is

R(x1, x2) =
∫

Ω

2∑
j=1

2∑
k=1

( ∂

∂tj

2xk(t)(
1 + x1(t)2 + x2(t)2

)1/2

)2

dt . (5.5)

In the method of Zheng/Chellappa again, instead of Xt1 and Xt2 two unknown functions x1, x2 are
considered. The integrability condition is formulated through a comparison with the partial derivatives of a
third unknown function x3: 55)

(V)5 : F (x1, x2, x3) =
∫

Ω

(
I(t) ·

√
1 + x1(t)2 + x2(t)2 +

2∑
j=1

ηj xj(t)− η3

)2

dt (5.6)

+µ

∫
Ω

((
x1(t)−

∂x3

∂t1
(t)
)2

+
(
x2(t)−

∂x3

∂t2
(t)
)2 )

dt + R(x1, x2, x3) −→ inf ! ; x ∈W 1,p
0 (Ω,R3)

with 2 < p <∞. In this method, the regularization term reads as follows:

R(x1, x2, x3) =
∫

Ω

( ∂I

∂t1
(t) − −η1 x2(t)2 + η2 x1(t)x2(t)− η3 x1(t)− η1(

1 + x1(t)2 + x2(t)2
)3/2

· ∂x1

∂t1
(t) (5.7)

− −η2 x1(t)2 + η1 x1(t)x2(t)− η3 x2(t)− η2(
1 + x1(t)2 + x2(t)2

)3/2
· ∂x2

∂t1
(t)
)2

dt

52) [Dacorogna/Marcellini 99 ] , p. 44, proof of Theorem 2.3., (2.24), and [Barnes/Zhang 00 ] , p. 129, Theo-

rem 1.
53) [Lions/Rouy/Tourin 93 ] , p. 329, Fig. 2.
54) [Horn/Brooks 86 ] , pp. 191 ff., as further development of [ Ikeuchi/Horn 81 ] , p. 161 f. We formulate this and

the following problem within Sobolev spaces.
55) [Zheng/Chellappa 91 ] , p. 686.
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+
∫

Ω

( ∂I

∂t2
(t) − −η1 x2(t)2 + η2 x1(t)x2(t)− η3 x1(t)− η1(

1 + x1(t)2 + x2(t)2
)3/2

· ∂x1

∂t2
(t)

− −η2 x1(t)2 + η1 x1(t)x2(t)− η3 x2(t)− η2(
1 + x1(t)2 + x2(t)2

)3/2
· ∂x2

∂t2
(t)
)2

dt .

The variational problems are solved then numerically by discretization schemes for the Euler-Lagrange
equations. 56)

2) Multiple image methods. Even from a pair of stereo images registered in the image plane { ( t1, t2, T3 )T ∈
R3
∣∣ (t1, t2) ∈ R2 }, the unique reconstruction of a W

1,∞-surface is impossible. 57) If the surface admits
Lambertian reflectance then additional information cannot be obtained by a change of the image plane but
rather by registration of multiple greyscale images I1(s), ... , Ik(s) of the same surface under different
illuminant directions e1, ... , ek. The multiple image methods presented by Piechullek are based on this
fact. 58)

c) Shape from Shading as multidimensional control problem.

With regard to Theorem 5.1., the restriction ∇X(t) ∈ K (∀) t ∈ Ω (which can be interpreted as a slope
restriction for the unknown surface X as well) has to be included explicitly within the variational formulation
of the Shape from Shading problem. In this context, we bring up for discussion four possibilities for treating
Shape from Shading as a multidimensional control problem.

1) Immediate search for X ∈ W
1,∞(Ω,R), single-image method. We arrive at the following Dieudonné-

Rashevsky type problem:

(P)4 : F (X,u) =
∫

Ω

(
I(t) ·

√
1 + u1(t)2 + u2(t)2 +

2∑
j=1

ηj uj(t)− η3

)2

dt −→ inf ! ; (5.8)

(X,u) ∈ W
1,p
0 (Ω,R)× L

p(Ω,R2) ; (5.9)

∇X(t) = u(t) (∀) t ∈ Ω ; (5.10)

u ∈ U =
{
u ∈ Lp(Ω,R2)

∣∣ u(t) ∈ K (∀) t ∈ Ω
}

(5.11)

with 1 < p <∞, I : Ω → R measurable with 0 6 I(t) 6 1 (∀) t ∈ Ω, a unit vector e = ( η1 , η2 , η3 )T and a
convex body K ⊂ R2 with o ∈ int (K).

Since the integrand f(t, v) =
(
I(t) ·

√
1 + (v1)2 + (v2)2 + η1 v1 + η2 v2− η3

)2 is nonconvex, we replace (P)4
by its convex relaxation. First we define for t ∈ Ω the sets

M(t) =
{
v ∈ R2

∣∣ I(t) ·√ 1 + (v1)2 + (v2)2 + η1 v1 + η2 v2 6 η3
}

(5.12)

which are ellipses for I(t) > 0 (cf. (5.1) ) and closed half-spaces for I(t) = 0. Thus for all t ∈ Ω the sets M(t)
are convex. The function

fc(t, v) = 1(R2 \M(t) )(v) · f(t, v) (5.13)

56) Cf. the surveys given in [Durou/Falcone/Sagona 04 ] , [Piechullek 00 ] , p. 16 f., as well as [Zhang/Tsai/Cry-

er/Shah 99 ] , pp. 691 ff.
57) In this case, however, the unique reconstruction of a C1-surface is possible for appropriate illuminant directions e.

See [Chambolle 94 ] , p. 9, Theorem 2.
58) [Piechullek 00 ] , p. 18 and pp. 27 ff.
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admits a representation fc(t, v) = ϑ
(
g(t, v)

)
with ϑ(s) = 0 for s 6 0 and ϑ(s) = s2 for s > 0 as well as

g(t, v) = Max
(
0 , 1(R2 \M(t) )(v) · I(t) ·

√
1 + (v1)2 + (v2)2 + η1 v1 + η2 v2 − η3

)
and is, consequently, for

fixed t ∈ Ω convex as function of v. 59) Obviously, fc(t, v) is the convex envelope of f(t, v) with respect to v.
Now, we can formulate the relaxed problem:

(P)c
4 : F c(X,u) =

∫
Ω

1(R2 \M(t) )

(
u(t)

)
·
(
I(t) ·

√
1 + u1(t)2 + u2(t)2 +

2∑
j=1

ηj uj(t)− η3

)2

dt −→ inf ! ;

(5.14)

(X,u) ∈ W
1,p
0 (Ω,R)× L

p(Ω,R2) ; (5.15)

∇X(t) = u(t) (∀) t ∈ Ω ; (5.16)

u ∈ U =
{
u ∈ Lp(Ω,R2)

∣∣ u(t) ∈ K (∀) t ∈ Ω
}
. (5.17)

Theorem 5.2. (Relaxation of (P)4) Consider (P )4 with the following assumptions about the data: Ω ⊂ R2

is the closure of a bounded Lipschitz domain, the function I : Ω → R is measurable with 0 6 I(t) 6 1
(∀) t ∈ Ω, e = ( η1 , η2 , η3 )T is a unit vector, and K ⊂ R2 is a closed ball centered in the origin. Then
problems (P)4 and (P)c

4 possess the same (finite) minimal value, and for (P)c
4 there exists a global minimizer.

We can include the results of Section 3 into the statement of the Pontryagin maximum principle for (P)c
4. Let

us further remark that, by (5.17), the admissible domain of (P)c
4 is a subset of W 1,∞

0 (Ω,R) × L
∞(Ω,R2),

and p ∈ ( 1 , ∞ ) may be chosen arbitrarily in the following theorem.

Theorem 5.3. (Pontryagin’s maximum principle for the problem (P)c
4 ) Consider (P)4 and (P)c

4

under the assumptions of Theorem 5.2. Then for a given global minimizer (x∗, u∗) of (P)c
4 we have the

following optimality conditions:

1) Let 1 < p < ∞. Since (P)c
4 satisfies the assumptions of Theorem 2.2. and 2.3., there exist multipliers

λ0 > 0 and y ∈ Lq(Ω,R2), p−1 + q−1 = 1, with

(M) : λ0

(∫
{ t∈Ω | u(t)∈M(t) }

(
I(t) ·

√
1 + u1(t)2 + u2(t)2 +

2∑
j=1

ηj uj(t) − η3

)2

dt

−
∫
{ t∈Ω | u∗(t)∈M(t) }

(
I(t) ·

√
1 + u∗1(t)2 + u∗2(t)2 +

2∑
j=1

ηj u
∗
j (t) − η3

)2

dt

−
2∑

j=1

∫
Ω

(
uj(t)− u∗j (t)

)
yj(t) dt > 0 ∀u ∈ U ;

(K) :
2∑

j=1

∫
Ω

( ∂X
∂tj

(t)− ∂X∗

∂tj
(t)
)
yj(t) dt = 0 ∀X ∈W 1,p

0 (Ω,R) ;

(MP) : −λ0

(
I(t)

√
1 + u∗1(t)2 + u∗2(t)2 +

2∑
j=1

ηj u
∗
j (t) − η3

)2 +
2∑

j=1

u∗j (t) yj(t)

= Max
v ∈K∩M(t)

(
−λ0

(
I(t)

√
1 + (v1)2 + (v2)2 +

2∑
j=1

ηj vj − η3
)2 +

2∑
j=1

vj yj(t)
)

(∀) t ∈ Ω with u∗(t) ∈ M(t) ;

0 = Max
v ∈K∩M(t)

(
−λ0

(
I(t)

√
1 + (v1)2 + (v2)2 +

2∑
j=1

ηj vj − η3
)2 +

2∑
j=1

vj yj(t)
)

(∀) t ∈ Ω with u∗(t) /∈ M(t) .

59) [Rockafellar/Wets 98 ] , p. 50, 2.20 (b).
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2) Let 4
3 6 p 6 4. Then (P)c

4 satisfies the assumptions of Theorem 3.3., 1), 2) and 4) as well. Consequently,
there is y′ = o within the Weyl decomposition y = y′+ y′′ of the multiplier from Part 1), and conditions (M)
and (MP) from Part 1) hold with λ0 > 0 and y = y′′ ∈ Rq(Ω,R2), p−1 + q−1 = 1, while (K) is automatically
satisfied.

2) Immediate search for X ∈ W
1,∞(Ω,R), multiple image method. Assume that for the reconstruction

of X, e. g. two aerial photographs I ′(t), I ′′(t) with different illuminant directions e′ = ( η′1 , η
′
2 , η

′
3 )T and

e′′ = ( η′′1 , η
′′
2 , η

′′
3 )T are available. Then we may search for a common solution (resp. approximate solution)

X of both Horn’s equations via the following Dieudonné-Rashevsky type problem:

(P)5 : F (X,u) =
∫

Ω

( (
I ′(t) ·

√
1 + u1(t)2 + u2(t)2 +

2∑
j=1

η′j uj(t)− η′3
)2 (5.18)

+
(
I ′′(t) ·

√
1 + u1(t)2 + u2(t)2 +

2∑
j=1

η′′j uj(t)− η′′3
)2 )

dt −→ inf ! ;

(X,u) ∈W 1,∞(Ω,R) × L
∞(Ω,R2) ; (5.19)

∇X(t) = u(t) (∀) t ∈ Ω ; (5.20)

u ∈ U =
{
u ∈ Lp(Ω,R2)

∣∣ u(t) ∈ K (∀) t ∈ Ω
}

(5.21)

with 1 < p < ∞ and a convex body K ⊂ R2 with o ∈ int (K). (P)5 can be treated similarly to (P)4; after
convex relaxation, the theorems from Sections 2 and 3 are applicable.

3) Multiple image method with balance of different surface representations. Again, let two photographs I ′(t),
I ′′(t) of the unknown surface with different illuminant directions e′ = ( η′1 , η

′
2 , η

′
3 )T and e′′ = ( η′′1 , η

′′
2 , η

′′
3 )T

be given. Instead of searching for a common solution of the Horn’s equations, we could solve both equations
separately, which results in two “approximations” X1, X2 ∈W 1,∞

0 (Ω,R) for the unknown surface. We have
to require then that these solutions are sufficiently close neighbors. The coupling between X1 and X2 can
be realized by a further term within the objective as well as by introduction of state constraints or control
restrictions. With an additional integral term, we arrive at the following problem:

(P)6 : F (X,u) =
∫

Ω

( (
I ′(t) ·

√
1 + u11(t)2 + u12(t)2 +

2∑
j=1

η′j u1j(t)− η′3
)2 (5.22)

+
(
I ′′(t) ·

√
1 + u21(t)2 + u22(t)2 +

2∑
j=1

η′′j u2j(t)− η′′3
)2 )

dt + µ

∫
Ω

(
X1(t)−X2(t)

)2

dt −→ inf ! ;

(X,u) ∈W 1,∞(Ω,R2) × L
∞(Ω,R4) ; (5.23)

JX(t) =
(
u11(t) u12(t)
u21(t) u22(t)

)
(∀) t ∈ Ω ; (5.24)

u ∈ U =
{
u ∈ Lp(Ω,R4)

∣∣ u(t) ∈ K (∀) t ∈ Ω
}

(5.25)

with 1 < p < ∞, µ > 0 and a convex body K ⊂ R4 with o ∈ int (K). This nonconvex problem requires
quasiconvex instead of convex relaxation, and the shape of the necessary optimality conditions is not yet
known.

4) Control formulation of the models of Horn/Brooks resp. Zheng/Chellappa (single-image method).
When accepting the “loose” formulation of the integrability condition within the models (V)4 and (V)5, we
obtain problems for two unknown functions x1, x2 ∈ W

1,∞(Ω,R). The restriction ∇X(t) ∈ K (∀) t ∈ Ω
carries over to (V)4 as a state constraint(

x1(t) , x2(t)
)T ∈ K (5.26)
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and to (V)5 as state constraint and control restriction:(
x1(t) , x2(t)

)T ∈ K ,
(
(x3)t1(t) , (x3)t2(t)

)T ∈ K . (5.27)

Then further restrictions for the gradients of x1 and x2 result in restrictions for the curvature for the
representation of the unknown surface. For example, from (V)4 we get the state-constrained Dieudonné-
Rashevsky type problem

(P)7 : F (x, u) =
∫

Ω

(
I(t) ·

√
1 + x1(t)2 + x2(t)2 +

2∑
j=1

ηj xj(t)− η3

)2

dt (5.28)

+
∫

Ω

(
u12(t)− u21(t)

)2

dt + µ

∫
Ω

f(u(t)) dt −→ inf ! ;

(x, u) ∈W 1,p
0 (Ω,R2)× L

p(Ω,R4) ; (5.29)

Jx(t) =
(
u11(t) u12(t)
u21(t) u22(t)

)
(∀) t ∈ Ω ; (5.30)(

x1(t) , x2(t)
)T ∈ K ∀ t ∈ Ω ; (5.31)

u ∈ U =
{
u ∈ Lp(Ω,R4)

∣∣ u(t) ∈ K̃ (∀) t ∈ Ω
}

(5.32)

with 1 < p < ∞, µ > 0 and convex bodies K ⊂ R2 and K̃ ⊂ R4 with o ∈ int (K) and o ∈ int (K̃). Again,
we arrive at a problem which requires quasiconvex relaxation and cannot be treated immediately by the
theorems from Sections 2 and 3. 60) Let us mention that the state constraint (5.26) can be regularized by
means of the introduction of an additional control variable. Let K be, for example, the ball K(o, R). Then
the inequality

0 6 R2 − x1(t)2 − x2(t)2 ∀ t ∈ Ω (5.33)

can be replaced by the mixed restriction

−ε ũ(t) 6 R2 − x1(t)2 − x2(t)2 (∀) t ∈ Ω (5.34)

with a parameter ε > 0 and an additional control variable ũ ∈ L
p(Ω,R), 1 < p < ∞, 0 6 ũ(t) 6 1

(∀) t ∈ Ω. Often, in the process of numerical solution, a mixed restriction of this type can be treated more
advantageously than the original state constraint. 61)

d) Proofs.

Proof of Theorem 5.1. 1) and 2): We apply [Dacorogna/Marcellini 99 ] , p. 35, Theorem 2.3., to
the function f(t, v) : Ω×R2 → R defined as

f(t, v) = I(t) ·
√

1 + v2
1 + v2

2 + η1 v1 + η2 v2 − η3 . (5.35)

Together with I, f is continuous in t and v, and for all fixed t ∈ Ω, f is in v convex. In our terminology, the
coercivity condition from [Dacorogna/Marcellini 99 ] , p. 34, Definition 2.1., reads as follows: There
exist some w ∈ R2 with

f(t, v + hw) > C1 |h | − C2 (5.36)

60) In the convex case, however, [Pickenhain/Wagner 00b ] , p. 300 f., Theorem 1.1., may be adapted.
61) Cf. for example [Rösch/Tröltzsch 03 ] , p. 138 f., and [Tröltzsch 05b ] , p. 630 f.
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for all t ∈ Ω and all v ∈ R2 with | v | 6 R where C1, C2 are positive constants depending on R only. Choosing
w = ( 0 , 1 )T, we obtain for all v ∈ R2 with | v | 6 R:

f(t, v + hw) = I(t) ·
√

1 + v2
1 + (v2 + h)2 + η1 v1 + η2 (v2 + h)− η3 (5.37)

> I(t) ·
∣∣ v2 + h

∣∣− η1
∣∣ v1 ∣∣− η2

∣∣ v2 + h
∣∣− η3 (5.38)

>
(
I(t)− η2

)
·
( ∣∣ v2 ∣∣+ ∣∣h ∣∣ )− η1

∣∣ v1 ∣∣− η3 (5.39)

> ε
∣∣h ∣∣− εR− η1R− η3 . (5.40)

Thus we have found C1(R) = ε and C2(R) = −εR − η1R − η3. Since f(t, o) = I(t) − η3 6 0 for all
t ∈ Ω, the zero function gives admissible boundary values. The restriction for the gradients follows from
[Dacorogna/Marcellini 99 ] , p. 44 ff.

Proof of Theorem 5.2. Theorem 5.2. follows from [Ekeland/Témam 99 ] , p. 327, Corollary 2.17.,
together with p. 334, Proposition 3.4., and p. 335 f., Proposition 3.6.

Proof of Theorem 5.3. The only assumption of Theorems 2.2., 2.3. and 3.3. we have yet to check is the
differentiability of fc(t, v) with respect to v. Let t ∈ Ω be fixed. Then fc(t, v) is continuously differentiable
in v0 ∈ int ( M(t) ) as well as in v0 ∈ R2 \M(t). Choose now v0 ∈ ∂M(t); consequently, we have fc(t, v0) = 0.
Assume that v0 + h

(
1
0

)
∈ R2 \M(t) ∀h > 0. Then it holds

lim
h→0+0

1
h

(
f( t , v0 + h

(
1
0

)
)− f(t, v0)

)
=

∂

∂v1

(
I(t) ·

√
1 + (v0,1)2 + (v0,2)2 +

2∑
j=1

ηj v0,j − η3

)2

= 0 .(5.41)

From the convexity of M(t) it follows that v0 + h
(
1
0

)
∈ M(t) ∀h < 0 and

lim
h→0−0

1
h

(
f( t , v0 + h

(
1
0

)
)− f(t, v0)

)
= 0 , (5.42)

and the partial derivative ∂f c(t, v0)/∂v1 = 0 exists. Analogously, we get ∂f c(t, v0)/∂v2 = 0. Finally, one
may convince oneself of the continuity of ∇vf

c(t, v) on R2 \ int ( M(t) ).
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